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UNIFORMLY DISTRIBUTED RANDOM DIRECTIONS

IN BOUNDED SPHERICAL AREAS

Part II: Non-Conventional Methods

Luc Fraiture†

Abstract In this second part the attention is first focused onto small area uniform
distributions on the three dimensional sphere. These areas are limited to figures whose
circumference consists of small and great circle arcs for which uniform distributions cannot
directly be obtained by the usual formulation of definite integrals over polar co-ordinates.
To generate the distributions a novel method is introduced which is based on analytical
area ratios. Applications comprise first of all ratios of areas contained inside great circle
arcs and are further complemented by figures in which some or all of the boundaries are
small circle arcs. It will be shown in the case of a spherical triangle, that the surface
ratio method is not necessarily more effective than the toss away alternatives one can
construct with conventional random direction generation methods introduced in part I.
However, for areas involving a small circle in their circumference, a simple example is
given which cannot directly be solved by means of conventional tools. In the second half
of this note another novel mathematical uniform random direction generation method is
proposed which is also applicable in higher dimensions but limited to spherical rectangles
bounded by the equivalent of small circle arcs in planes orthogonal to the mathematical
equator. This method relies on the introduction of generalized meridians which themselves
are at the origin of an upper limit restriction to be imposed on the feasible rectangle size.

Introduction

In this note we look at effective random direction generation inside given boundaries
in three dimensions avoiding any toss away intervention. One knows that this is equivalent
to the generation of random points inside figures on the S2 sphere. We will no longer look
at the Rodrigues four-vector addressed in our Note 8.

In a first time we address trigonometrical figures, where the adjective ’trigonometrical’
also includes arcs of well defined small circles. It is understood that the definition of such
a small circle arc also requires the knowledge of its corresponding circle center. As in Note
8, the methods limited to S2 further rely on right ascension and colatitude co-ordinates
where the adequately selected pole location corresponds to the z-axis of some ’ad hoc’
orthogonal Cartesian co-ordinate system. Employing these polar co-ordinates allows to
construct judiciously selected area ratios, as functions of the right ascension α. These areas
are equal to the cumulative distribution function Fα(x). But Fα(x) could alternatively
obtained by integrating the probability density function p(α), abbreviated by pdf, up to
the corresponding intermediate value α0 inside the constraint interval applicable to the
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geometrical figure considered. Employing analytical areas thus allows to avoid the need to
explicitly construct a pdf, because one gets its actual integration without intervention of
calculus.

In a second part we introduce the mathematical background – relying this time on
Cartesian co-ordinates – which almost directly leads to the generation of uniformly dis-
tributed directions on squares or rectangles on S2 and even on spheres in higher dimensions.
To guaranty the statistical uniformity, these figures are subject to a size constraint which is
broad enough to allow correct random direction generation is most practical applications.

AREA RATIO ALGORITHMS

In this section we deal with analytical area descriptions for geometrical figures whose
boundaries comprise small and great circle arcs. The latter are the subject of conventional
spherical trigonometry for which the area formula is well known. Combining sectors of
spherical caps with canonical spherical triangles allows to derive the analytical surface
of non-canonical trigonometrical figures without problems as we will show in the last
subsection hereafter. By non-canonical we mean figures involving arcs of small circles.
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Fig. 1 Small and great circle arcs

Before proceeding, we have to extend the notational conventions for arcs and enclosed areas
by referring to figure 1. In this figure we show a small circle with angular radius ρ < π/2
centered at C and intersecting four great circles giving rise to the arcs AA’, BB’, AB and
A’B’. But the end points of these arcs are also the end point of small circle arcs which we
identify by writing AsA′s, BsB′s, AsBs, A′sB′s and so we equally write T (DAsBs) to denote
the improper triangle comprising the arc AsBs in its circumference. We further call the
area enclosed by AB and AsBs a (small circle) segment and T (CAsBs) a (small circle or
spherical cap) sector whose surface is known to be S(CAsBs)= α0 (1 − cos ρ) relying on
the notations in Fig. 1.

We note that the arcs DA and DB, both intersecting a single small circle, always
lead to a concave improper triangle T (DA′sB′s) and a convex improper triangle T (DAsBs)
as far as D is outside the small circle. In practical applications involving small circles
it is therefore indicated to start from a vectorial figure description which satisfies the
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requirement to define a small circle arc by three points on the unit sphere. Here these
points are the center of the small circle (C) and the end points of the arc (As and Bs),
which yield an isosceles triangle, when connected to D by great circle arcs. To establish
an easy and short link between geometrical figures bounded by great circles only, we also
introduce the following conventions. Looking at figure 2 hereafter, as example, we identify
a dihedral angle by a1a2a3 = a1a2ai = β2, keeping in mind that dihedral angles only have
a defined mathematical meaning if they apply to corner points between two great circle
arcs. Further, writing aman is equivalent to the arc ǫmn.

Arbitrarily Specified Spherical Triangles

With the intention to make a performance comparison, we introduce the arbitrary
spherical triangle with the same reference points as we have described in Note 8 in the
context of a toss away application. The random direction generation algorithm worked
out here allows the application to any spherical polygon, whose sides are great circle arcs,
because such polygons can be subdivided by means of triangulation. We thus consider
the three arbitrarily located unit vectors t1, t2 and t3 which are the corner points of a
spherical triangle, but with the restriction that none of the arcs separating any two of the
three directions is allowed to be larger than π. Also here, it is our strategy to perform
all computations trigonometrically with the assumption that the triangle has implicitly
been located so, that t1 coincides with the polar axis. Consequently, two of the sides
of the triangle then coincide with meridians and the spherical triangle is thus completely
embedded in a lune. Each time a random point has been obtained in the triangle, this has
to be transformed into a direction employing the direction cosines connecting the random
point to the corner points which, in fact, correspond to the triad t1, t2, t3 . The details
are explained in Note 8.
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Fig. 2 Geometrical specification of the spherical triangle

Let us start by deriving all angles of the spherical triangle from the three unit vectors,
shown in Fig. 2. The three arcs aiaj = ǫij and the dihedral angles ajaiak = βi at the
corners of the triangle are found from:

cos ǫjk = (tj · tk) and cos ǫjk = cos ǫij cos ǫik + sin ǫij sin ǫik cos βi (1a)
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where the indices i, j, k are a permutation of 1,2,3. We will also make use of the cosine
rule for dihedral angles and the sine rule of spherical trigonometry, namely

cos βi = − cos βj cos βk + sin βj sin βk cos ǫjk (1b)
sin ǫij

sinβk

= constant (1c)

Once all these angles are available, we can forget for a little while the Cartesian
reference provided by t1, t2, t3. This is because the cosine and sine rules do not depend on
the actual Cartesian reference the triangle is defined in. Hence, it is allowed to assume that
we deal with a polar co-ordinate system in which a1 coincides with the pole and thereby
defines colatitude. Further, the meridian passing though a1 and a2 is selected to be right
ascension α = 0 reference.

Let A(αi) represent the area S(a1a2ai) of the triangle with 0 ≤ αi ≤ β1. With this
notation we represent the well known area of the total triangle by

A(β1) = β1 + β2 + β3 − π (2)

And if we represent the dihedral angle at a1 in T (a1a2ai) by α̂, the corresponding area
A(α̂) = S(a1a2ai) not only varies with the angle α̂, but also with the dihedral angle

β̂i = a2aia1. The latter angle can be computed by means of the cosine rule for dihedral
angles (1b), yielding:

cos β̂i = − cos α̂ cos β2 + sin α̂ sin β2 cos ǫ12 (3)

while the sine rule (1c) allows to derive a1ai = ǫα by employing:

sin ǫα sin β̂i = sin β2 sin ǫ12 (4)

Hence, the area A(α̂) can analytically be written as a function of α̂ as follows:

A(α̂) = α̂ + β2 + arccos(− cos α̂ cos β2 + sin α̂ sin β2 cos ǫ12) − π (5)

By closer inspection, we see that (5) divided by the total area A(β1), happens to be the
result of the integral of the (unknown) pdf or the cumulative distribution of α from zero
to α̂. To come to a uniform randomly distributed value αt we have to solve:

ξ =
A(α̂)

A(β1)
= Fα(α̂) =

∫ α̂

0

p(x) dx (6)

for α̂ starting from a given uniform random number ξ between zero and one. Having αt,
the equations (3) and (4) provide the value of ǫα, which corresponds to the upper limit of
ǫ at the right ascension αt inside the triangle. Knowing this, the the random colatitude
ǫt is obtained in the usual way as was shown in the extended Tashiro algorithm and now
corresponds to step f4 of the algorithm hereafter.

It is suggested to perform the preparatory computations outside the direction genera-
tion algorithm. By these computations we mean all angles and arcs which remain invariable
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and are required for each direction generation again. Using the conventions of Note 8, we
can summarize the f-triangle algorithm as follows:

f1. ξ1 = ρ
(1)
u with 0 ≤ ξ1 ≤ 1

f2. get αt by solving (6) employing ξ1

f3. compute ǫα by using αt, (3) and (4)

f4. cos ǫt = ξ2 = ρ
(2)
u with cos ǫα ≤ ξ2 ≤ 1

f5. compute the three direction cosines with respect to the triangle corners for the direc-
tion obtained (see note 8)

f6. transform the point D with right ascension αt and colatitude ǫt to a unit vector
correctly located inside the triad t1, t2, t3 using the direction cosines of D.

A Performance test for Spherical Triangles

One will have noticed in the theoretical presentation of the area ratio method just
given, that one could obtain by means of differentiation the pdf for the right ascension
independently of colatitude, but the opposite is not true. There is thus the possibility of a
sequential separation of probability densities, but the formal mathematical factorization in
two independent pdf functions seems to be impossible. Consequently, a direct computation
of expectations can, so far, not be proposed to support a performance verification.

In order to check the uniformity of a sample of random directions distributed in
a spherical triangle, we propose to only rely on simple density verifications in selected
fractions of the triangle. We suggest three tests consisting each of dividing the triangle
in two ’test triangles’ by bisecting in turn each of its dihedral angles. To explain the
procedure, we bisect the dihedral angle β1. The part containing the known arc ǫ12 and
its two known adjacent dihedral angles β1/2 and β2 allow the computation of the third
dihedral angle κ1 by (1b) as follows:

cos κ1 = − cos(0.5 β1) cos β2 + sin(0.5 β1) sin β2 cos ǫ12 (7)

Only directions of the triangle for which α < 0.5β1 have to be counted. In this way we
have all data which allow counting of directions and computing densities for each of the
two triangles. If we have produced a sample of ntot trial points which must all be uniformly
distributed in the triangle, we should ideally sample

n1 =
0.5 β1 + β2 + κ1 − π

β1 + β2 + β3 − π
ntot (8)

points in the triangle fraction for which α ≤ 0.5 β1 applies. We repeat the same procedure
for the dihedral angle β2 and β3. In practice we will not obtain the ideal value given in
(8) but the true count ntrue which will vary from one sample to the next. Due to today’s
electronic computation power, we are in the comfortable situation that we can obtain
the statistical results for very large samples without practical limitations. Thereby error
percentages should decrease inversely proportional to the number of trials in a sample and
that is what we verify in the next subsection.
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A numerical example

We start from the corner points put at the right ascension and colatitude of a unit
vector triad as follows t1(10.00, 90.00), t2(18.00, 70.00), t3(20.00, 85.00). The first corner
point is thus located on the equator as is shown in Fig. 3. Because the trigonometrical
handling of this triangle is independent of the target location on a specified sphere we
can for the toss away application as well as for the area ratio method select t1 to be the
pole a1. In that case the definite integral for the toss away application will extend over
the improper triangle T (as

2a
s
0a1) and not over T (a2a0a1). Consequently, this covers the

area of the sector of a polar cap with radius ǫ12 = a1a2 = a1a0, whose area is equal to
β1 (1 − cos ǫ12)rad2. The ratio of the original triangle area T (a1a2a3) to the area of the
polar cap sector just described, is equal to 0.4802. This is by definition the geometrical
efficiency of the toss away algorithm corresponding to the of the pole location chosen
before. By selecting instead t2 this efficiency becomes 0.6777 and putting the pole at t3
yields the best geometrical efficiency, namely 0.68334. The geometrical efficiency of the
area ratio method is not affected by this choice.

Fig. 3 Test triangle
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Nevertheless, in the case of a spherical triangle, the area ratio method is numerically
slightly more complex than the toss away method. In the area ratio approach the com-
putation of a random right ascension always involves the determination a single root of
a non-linear equation. For that purpose we apply the method of the chord with some 10
simple iteration steps in the mean, depending on the accuracy we want to achieve. In
contrast, the toss away method relies on a direct simulation of the random right ascension.
Therefore, we penalize the area ratio method by assuming the requirement of a fictitious
third random number generation per direction simulation. Hence its numerical efficiency
drops to 2/3=0.6667 while the toss away method is 100% numerically effective. Conse-
quently, combining the numerical and geometrical efficiency both methods appear to be
equally effective except if we would select t1 as working pole for the toss away method.

If we now perform the test of the methods by means of subdividing the triangle in two
test triangles by bisecting dihedral angles, the question arises: ”How large are the errors
one may expect as a function of the sample sizes?”. To this end we have added table 1. In
this table we display the counts obtained for sample sizes of 100, 1000, 10,000 and 100,000
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trials. In the left column we show the ratio of the test triangle area over the total triangle
area for bisections at the three successive corners. The results for the toss away method

Table 1 COUNT ERRORS IN THE TEST TRIANGLES

AREA TRIAL 100 TRIAL 1000 TRIAL 10,000 TRIAL 100,000
RATIO COUNT ERR% COUNT ERR% COUNT ERR% COUNT ERR%
0.65755 61 -7.2 643 -2.2 6623 0.7 65757 0.0

67 1.9 663 0.8 6633 0.9 65805 0.1
0.41373 41 -0.9 405 -2.1 4161 0.6 41200 0.4

40 -3.3 392 -5.3 4022 -2.8 41353 0.0
0.42444 40 -5.8 470 10.7 4227 0.4 42534 0.2

43 1.3 426 0.4 4264 0.5 42415 -0.1

are shown first; this is in the line containing the aforementioned ratio. A glance at the
table reveals that already for samples of 100 to 1000 trials the trend is recognizable with
count discrepancies up to 11%. Refined results can be expected for samples from 10,000
trials onwards. As said before, this is no problem in the light of today’s computer power.
We further notice that the results of both methods appear to be statistically comparable.

The Segment of a Small circle

We now describe the algorithm necessary to generate uniformly distributed random
direction in a figure whose circumference consists of only an arc of a great circle and an
arc of a small circle which we called a small circle segment before. For this we refer to Fig.
1. Exactly as for the arbitrary spherical triangle before, we assume that the points A, B
and C in Fig. 1 correspond to vector definitions which tell us where the segment FBsGsAs

is located on the unit sphere. We then apply our geometric considerations as if T (CAsBs)
has its point C located at the pole. Similar to the previous cases, (6) is to be replaced by

ξ =
A(α̂)

A(α0)
=

S[FBsGs(α̂)]

S(FBsGsAs)
=

S[CBsGs(α̂)] − S[CBF(α̂)]

S(CBsGsAs) − S(CBA)
(9)

where ξ is the usual uniformly distributed random number comprised between zero and
one. The only quantity we miss to be able to compute S[CBF(α̂)] is the dihedral angle

φ̂ =CFB which we find by applying (1b). This yields

φ̂(α̂) = arccos(− cos α̂ cos γ + sin α̂ sin γ cos ρ) (10)

which leads to

ξ =
π − α̂ cos ρ − γ − φ̂(α̂)

π − 2γ − α0 cos ρ
(11)

By solving this equation for α̂ we obtain the random right ascension αt with respect to the
arc CB which corresponds to α = 0. We still need the random colatitude ǫt in the interval
defined by CF(α) ≤ ǫt ≤ CG = ρ. Based on (1b) we derive CF from

cos γ = − cos α cos φ + sin α sin φ cos CF (12)
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Starting from cos γ and a further random number we derive a random colatitude ǫt on the
meridian starting from the pole C and ending between the arcs AB and AsBs by applying
Tashiro’s method.

Thereby all the elements belonging to the generation of a random point D inside the
segment of a small circle are available, but we still need the direction cosines to turn this
point into a direction. The direction cosine cos ζC of D with respect to C is simply cos αt:
With respect to B we get

cos ζB = cos ρ cos ǫt + sin ρ sin ǫt cos αt (13)

and for cos ζA we replace αt by α0−αt in the right hand side member of (13). The g-circle
segment algorithm can now be summarized as follows .
g1. ξ1 = ρ1

u with 0 ≤ ξ ≤ 1
g2. solve (11) for α̂ using ξ1 and obtain αt

g3. obtain ǫmin = CF from (12) using α
g4. cos ǫt = ξ2 = ρ2

u with cos ρ ≤ ξ ≤ cos ǫmin

g5. obtain the direction cosines of the point D(αt, ǫt) with respect to the triad points A,
B and C.

g6. compute the correctly located unit vector corresponding to D inside the unit vector
triad A,B and C.
It must be noted that the convex surface, corresponding to the intersection of two

small circles, is equal to two segments glued together along the great circle connecting
the intersection points. For both circles do not need to have equal radii, the area of
the segments may be different. At any rate, if one uses the algorithm just described, a
random number has to decide on which side of the internal boundary the next random
number has to be generated and correspondingly which sector parameters apply. If the
two intersecting small circles build a concave surface, the small circle segment algorithm
described before can be combined with a toss away criterion. Caveat! The distribution
will be incorrect if one does not restart from scratch each time the colatitude found is not
inside the prescribed boundaries. It is absolutely necessary to also redetermine a random
right ascension if a colatitude value has been tossed away. Otherwise we introduce illegal
statistical correlations.

If we wish to verify the performance of the circle segment algorithm we first remark
that the great circle connecting A and B in Fig. 1 is unique. However, there is an infinity
of different small circle arcs which can pass through the points A and B. Therefore, we
can again use the idea of partitioning the segment in two areas. To this aim it will be
sufficient to introduce an adequate auxiliary small circle arc passing through A and B so
that this arc is fully inside the segment and subdivides it in two areas. To achieve this we
have to move the auxiliary small circle center C’ on a great circle arc through C which is
perpendicular to the arc AB. To generate a small circle arc inside the segment, C’ has to
be moved away from the segment such the the new radius ρ′ satisfies ρ < ρ′ < π/2.

PSEUDO SURFACE CO-ORDINATE METHODS

. The purpose of this section is to provide a straight forward random direction gener-
ation method for spherical rectangles. By rectangles we mean figures which are defined by
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constraining the absolute value of the Cartesian components of a direction allowing differ-
ent cut off constraints on different orthogonal co-ordinate axes. We rely on the convention
that we have a vector space Vk with orthogonal base vectors along k Cartesian Cartesian
co-ordinate axes. The +xk-co-ordinate axis corresponds to the polar axis along the unit
vector v0.

The generation of uniformly distributed direction in rectangles on S2 by the present
method yields figures contained inside concave small circle boundaries. These geometrical
concepts loose their meaning in higher dimensions, where the method can equally be ap-
plied. In that case we propose that the name ’rectangle’ is an abstraction not representable
in our geometrical imagination. A very basic introduction to the higher dimensional ge-
ometry has been given in our Note 4. Hereafter we recall a few basic notions.

Almost all our geometrical considerations derive from the definition of a meridian on a
sphere with a pole in dimension 3 or higher. Let v⊥ be a unit vector such that v⊥ ·v0 = 0,
then the locus of all unit vectors v = av⊥ + bv0 for any a and b with a2 + b2 = 1 is called
a meridian through the pole v0. This is, in fact, an alternative to ’the tangent normal
decomposition’ which is described by Mardia and Jupp1

In the k-dimensional Euclidean vector space Vk there are (k− 1) mutually orthogonal
meridians at a pole on Sk−1 and they only meet again at the anti pole where they are, of
course, again orthogonal. We can thus introduce the Cartesian co-ordinates (x1, . . . , xk)
as laying in the direction of the orthonormal basis (u1,u2, . . . ,uk) ∈ Vk with v0 = uk.
Hence, any point on a base meridian Mj generated by uj and v0 projects on the xj and
xk-axis only. Consistent with the terminology just proposed we will call equator of the
sphere Sk−1, that part of the subspace orthogonal to uk which is fully contained within
the sphere Sk−1. Hence, the locus of all unit vectors in the equator plane is equivalent to
Sk−2.

The meridians are a means to define the symmetry properties of a random direction
distribution. This again is explained in Note 4. Rotational and axial symmetry are very
well known symmetry concepts but Rotational Uniformity (RU) around a symmetry
axis is probably not. We say that a pdf is RU if it expresses that the probability to
find a random direction in the neighborhood of a meridian is equal for every meridian
independent of the probability distribution inside this neighborhood. This may best be
explained by an example of an error distribution which is assumed to be axially symmetric
around a polar axis (although this is not a necessary condition for having a RU) . If the
corresponding pdf is RU it is equally probable to find random directions near meridians
where large errors are more probable as well as near meridians where small errors are more
likely. A uniform random distribution of directions in a spherical square is typically not
RU, because one can expect more random points along the meridians along the diagonals
than along meridians parallel to the sides. The RU concept is useful, because it may point
to the smaller/larger probability to be in (un)favorable directions in a (plane or spherical)
control problem, for instance. For large control windows, in flight dynamics for example,
this situation is usually aggravated by the fact that opposite sides of a direction rectangle
are not parallel.

We further introduce a Cartesian co-ordinate oriented description of directions around
the pole as an approximate alternative to a polar-spherical co-ordinate description. If a
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random direction v is parameterized by signed arcs on base meridians Mj at the pole,
signed arc lengths will be denoted by ǫj and referred to as surface pseudo co-ordinates of
a direction. The actual projection of ǫj on the co-ordinate axis uj with j 6= k is

xj = sin ǫj , (1 ≤ j ≤ k − 1) (14)

which paradoxically is a direction cosine. Let us first define an arbitrary unit vector
ve by means of its Cartesian components (xe1, . . . , xek) where the last component is
along the pole by convention. Apart from a simple ambiguity, ve is also fully defined

by ǫ1, . . . , ǫk−1,±
√

1 −
∑k−1

i=1 x2
ei. Due to the fact that ve is a unit vector we have

∑k

i=1 x2
ei = 1 or equivalently

∑k−1
1 x2

ei = 1 − x2
ek, but xei = sin ǫi for i < k which

makes that

sin2 ǫ =

k−1
∑

i=1

sin2 ǫi (15)

The co-ordinate properties are only ’pseudo’ because the ǫi on different base meridians
(only orthogonal at the pole and anti pole) are not subject to the Euclidean component
composition properties, but to

v =

k−1
∑

i=1

sin ǫi ui ± cos ǫuk (16)

and only strictly apply on the base meridians. If we thus have random components uni-
formly distributed inside given intervals on the different base meridians we have to go
back to Cartesian components to construct the actual unit vectors. It may happen though
that the k− 1 random pseudo co-ordinates do not yield a real polar Cartesian component,
because the condition

k−1
∑

i=1

sin2 ǫi ≤ 1 (17)

is violated. This will thus have to be prevented by a toss away intervention if the cut off
limits allow such a case. It is then important to always perform a complete restart, instead
of keeping the co-ordinate(s) which so far satisfy/ies (17) and continue by re-simulating the
random number which caused the violation. Omitting this precaution leads to correlation
which affects the ultimate uniformity of the directions obtained.

If we want to avoid any toss away, we have to ensure that the largest cut off values
combined preclude any violation of (17). To formally represent this ’in advance’ constraint,
we agree to write ǫ−j < ǫ+j to represent the cutoff of the pseudo-co-ordinates on the base

meridian j or, equivalently x−

j < x+
j on the j-th co-ordinate axis. We get the inequality

0 < 1 −
k−1
∑

j=1

sin2
(

sup(|ǫ−j |, |ǫ+j |)
)

(18)

which we assume to be not satisfied in the h-meridian algorithm for k = 4 hereafter:
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h1. x1 = sin ξ1 = ρ
(1)
u with ǫ−1 ≤ ξ1 ≤ ǫ+1

h2. x2 = sin ξ2 = ρ
(2)
u with ǫ−2 ≤ ξ2 ≤ ǫ+2

h3. if xtest = 1 − x2
1 − x2

2 < 0 go back to step (h1)

h4. x3 = sin ξ3 = ρ
(3)
u with ǫ−3 ≤ ξ3 ≤ ǫ+3

h5. if xtest = 1 − x2
1 − x2

2 − x2
3 < 0 go back to step (h1)

h6. x4 =
√

xtest

h7. reposition the rectangle, if required, using 4 direction cosines to the separate co-
ordinate axes of the simulation and apply them to the target (rotated) co-ordinate
system.

For S2, this algorithm produces random points in a concave spherical rectangle whose sides
are arcs of small circles. These small circles are perpendicular to the equator and their
centers are located on the separate Cartesian co-ordinate axes. The optional constraint
(18) suggests that, in practice, one may be better off by locating the rectangle symmetri-
cally around the pole at the price of a repositioning of each random point on the sphere.
The direction cosines of these points are their co-ordinates themselves. The repositioning
method given in our Note 8 is equivalent to a direct rotation in this case, because the
reference axes are mutually orthogonal.

We can, of course, by using the area ratio method generate uniform randomly dis-
tributed directions on S2 in spherical rectangles or polygons whose boundaries are great
and/or small circle arcs. The figure should then cover less than a hemisphere, but the
small circle arcs may belong to circle centers which have not to be confined to the equator.

CONCLUSIONS

Considering our Note 8 together with this contribution we have extended the defini-
tion of pdf’s based on polar co-ordinates on the three dimensional sphere with the aim to
generate uniformly distributed directions on limited figures bounded by great and small
circle arcs. In the simplest case, this was derived from the well known spherical integrals
involving pdf’s, creating the awareness about both, the nature of the figures which can
be treated with very little effort on the one hand and the availability of the means of
checking uniformity within narrow bounds on the other hand. In more involved cases, we
have presented the simulation of random directions by means of area ratios expressed as a
function of variable right ascension which analytically represents the variation of the inte-
gration of the cumulative distribution function of a right ascension-pdf’s centered around
the pole. This novel method was applied to an arbitrary spherical triangle. Using the same
technique, we added an algorithm for the generation of random directions inside a small
circle segment, which can be adapted to small circle intersections. Apart from the polar
co-ordinates we also introduced pseudo surface co-ordinates on the sphere issuing from the
pole as origin. This has led to a novel and extremely simple, statistically rigorous algo-
rithm for small circle rectangles whose boundaries are arcs of small circles perpendicular
to the equator.
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