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1. INTRODUCTION

The purpose of present considerations is the certification of non-linear estimation em-
ploying intermediate variables in an extreme case as we will explain hereafter. Intermediate
variables (described in note 1) are employed in non-linear estimation problems involving
overdetermined systems of equations to separate measurements from unknowns by intro-
ducing new unknowns, which are called ’intermediate variables’. This separation allows the
grouping of measurements and unknowns in separate equation members. The transformed
system then allows a Gauß-Markov estimation which leads to a minimum variance result.
The prize to be paid is the creation of a number of new trivial equations and the fact that
the original measurement equations may become constraints. In the example selected it
will happen that all measurement equations are turned into constraints. This is a typical
extreme case which one encounters in auto regressive filtering. We will Demonstrate that,
also in this case, intermediate variables work at least equally effective as the most accurate
known techniques both from a precision as from a numerical point of view.

The estimation of real sinusoids in white noise starting from small data samples where
close frequencies can no longer be resolved by periodograms, represents a class of problems
which has the properties just described and allows a comparison of intermediate variables
on the one hand with the iterative quadratic maximum likelihood method introduced in
[1] and [2] and commonly termed IQML on the other hand. The latter method determines
the M unknown constant radian frequencies ωm, phases φm and amplitudes Am from the
N equidistantly observed signals

yn = y(n) =

M∑

m=1

Am cos (ωmn + φm) + vn (1)

* Apart from the introduction, this note is almost equal to a correspondence submitted
to the Signal Processing Journal in the summer of 1998, which was declared ’lost’ by
the technical editor in July 1999, requiring resubmission, which was not made. This had
been preceded by two earlier versions which did not refer to IQML, the first of which was
submitted in spring 1997. Apart from a few minor differences the present version, extended
by section two presented in note 1, was resubmitted to the same journal in January 2008
without success.

† Private contribution; address: Luc Fraiture, Lucasweg 6, D-64287 Darmstadt, Ger-
many, e-mail: lucfraiture@web.de
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The observed signal is subject to white noise vn with E(vn) = 0 and E(vkvℓ) = σ2δkℓ.
Direct exact maximum likelihood estimation (MLE) as presented in [3] is quite difficult,
for the right global extremum is surrounded by secondary maxima, thus requiring a very
accurate initial guess to be able to guarantee convergence to the right estimate. The IQML
method provides an exact MLE result in the parameter space of the prediction polynomial
where the multimodal environment does — according to experience — not require a very
close initial guess and achieves unproblematic convergence to the right solution for modest
signal to noise ratios (SNRs); in the example we will give this is 20dB and higher. The
introduction of IQML as total least squares problem [4] was preceeded by the publication of
an intuitive iteration algorithm for the purpose of linear system identification by Steiglitz
and McBride in [5]. This and also the estimation filter proposed in [6] have been shown in
[7] to be exactly equivalent to IQML. It means that the numerical steps in the iterations
of the different approaches can be reduced to each other. More recent investigations [8-9]
have shown that classical IQML as introduced in [1-2] – which we have employed in the
comparison – is not necessarily consistent (this means: does not converge in the limit to
the true solution, even if one starts the limiting process close enough to the true solution).
We have included a numerical test which addresses this problem at low SNR.

What we propose in this case realizes the separation of measurements from unknowns
by simply transforming all the incriminated measurements into unknown intermediate
variables. These new unknowns are then separately equated to the measurements they
replace, creating a corresponding number of new trivial measurement equations. In the
present problem, as said before, all N equations (1) become constraint equations. The
constrained system obtained is solved by a Gauß-Markov estimation method also called
exact constrained least squares. We will thus show empirically that intermediate variables,
if treated correctly, competitively lead to the MLE result.

The derivation of the cost function based on intermediate variables is made in section
2. To avoid digression into side issues the simplest application has been selected, namely
the sum of real cosines without damping. Generalization to damped signal problems is
straight forward. In section 3 we compare IQML with the intermediate variable approach.
As introduction to the numerical example we cursorily explain how we have implemented
the IQML algorithm. The algorithm we have employed to minimize the cost function of
the new method, although not part of the method as such, is described in the appendix

3. EXACT CONSTRAINED LEAST SQUARES

Concerning (1) we only know M and the measurements yn, while all other parameters
are unknown. In this deterministic context the idealized model for yn − vn = xn can be
taken as a linear combination of complex exponentials, or

xn = 0.5

+M∑

m=−M

αmzn
m

with the shorthands:

zm = z−1
−m = eiωm , αm = α−m = Ameiφm , α0 = 0
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where overbar means complex conjugation. There are thus 2M different values of zm which
are considered to be the collection of roots of a polynomial of degree 2M with coefficients
am, namely

0 =
−1∏

k=−M

(x − zk)
M∏

ℓ=1

(x − zℓ) =
+M∑

m=−M

amxM+m (2)

Then, xn is an asymmetric homogeneous power sum of the roots, and as such

+M∑

m=−M

amxr+m = 0 (3)

must strictly hold for any integer value of r. We know more about the polynomial coef-
ficients, because if zm is a root, then also zm as well as z−1

m must be roots. Hence, the
coefficients am are real and am = a−m. This leaves only M + 1 different coefficients one of
which can to be set to an arbitrary non-zero value to get rid of the scaling indetermination.
We select a0 = 1. In analogy to auto-regressive filtering and the Prony approach we call
this the prediction polynomial.

If we wish to determine the internally consistent and deterministic model just pre-
sented, we must simultaneously estimate both the N values of xn – which in this problem
are the intermediate variables – grouped in the vector x, as well as the M polynomial
coefficients which we combine in the vector a. Thereby the global vector of unknowns
Θ′ = |x′|a′| in our alternative method has dimension N + M . Accents are employed to
denote transposition. To perform an optimal estimation we thus dispose of the N trivial
linear random equations for the intermediate variables, namely

xn = yn, or x = y (4)

and the bilinear constraint equations resulting from the application of (3), or

0 = fr(a,x) = xr+M + a1(xr+M+1 + xr+M−1)

+ a2(xr+M+2 + xr+M−2) + . . . + aM (xr+2M + xr) (5)

for r running from 1 to N − 2M . This means that the estimation method can be applied
only if 3M < N .

The equations (4) and (5) are in a shape compatible with the Gauß-Markov theorem,
allowing an optimal least squares solution achieving minimum variance estimates subject to
the Cramèr-Rao bound (CRB) with all types of bias free white noise. Setting up the exact

least squares or Gauss-Markov estimation as it is normally called, must thus lead to the
equivalent of the maximum likelihood of (1) in the context of Gaussian noise, provided the
parameterization of the unknowns in (1) achieved by Θ is one-to-one. Unfortunately, not
all constrained values of Θ correspond to values fitting (1). More precisely, the condition
am = a−m given earlier is necessary but not sufficient to force all roots to be on the
complex unit circle. Couples of real roots which are each other inverse are possible as
well as quadruples of complex roots, for if u is any complex root with ||u|| 6= 1, then also
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u and the inverses of these two values are roots of a polynomial with am = a−m. The
one-to-one correspondence would exist if (1) contained hyperbolic instead of trigonometric
cosines. Nevertheless, we can expect good performances as long as roots are not attracted
towards the real axis. The fact that the real axis is not possible for a parameterization
of undamped signals by a symmetric prediction polynomial, suggests that the bench mark
test for damped signals found in [1], [2], [11] and [12] and consequently having one of its
roots spot on the real axis does not provide the right performance picture for the case of
undamped signals.

The constrained cost function Q, which has to be minimized to obtain an optimal
least squares solution for our problem, becomes:

Q =
1

σ2

N∑

n=1

(yn − xn)2 + 2

N−2M∑

r=1

λrfr (6)

where λr are Lagrange multipliers. The algorithm employed in the numerical examples
for minimizing (6) is given in the appendix without claiming that there may not be better
numerical alternatives. There are N + M unknowns wherefrom N − 2M are fixed by the
constraints. Consequently, the vector Θ to be estimated contains only 3M independent
components. The others can be reconstructed by applying (5). The vector a uses up M
of these independent components by yielding the estimates for the ωm via the polynomial
roots and hence, an arbitrary selection of 2M estimated intermediate variables combined
with ωm uniquely determines the estimates for Am and φm. This later step is straight
forward and does not need to be detailed.

4. COMPARISON OF IQML AND LEAST SQUARES ESTIMATES

The comparison presented in this section is made against the CRB applicable to (1)
which has a canonical shape. The computation of the CRB for the estimates of frequencies
appearing in sums of sinusoids is well known and a good account about it can be found in
section 13.4 of the book by Kay[13].

The IQML application we have implemented is a non-complex formulation where the
vector a of the coefficients of the symmetric prediction polynomial is selected so as to
minimize

b′B′(Jx J ′

x)−1Bb

We have taken b′ = |1, a′|, where a is as in previous section. The (N − 2M) × N matrix
Jx is defined in (9) in the appendix. It is a banded matrix which is a function of a only.
The (N − 2M) × (M + 1) matrix B is equivalent to |g(y), Ja(y)| also defined in eq. (9)
and (10), but here it is only a function of the measurements y whereas the corresponding
matrices in the appendix are functions of the intermediate variables. At each iteration
of the IQML method we determine a new eigenvector b corresponding to the smallest
eigenvalue of B′(JX J ′

x)−1B based on the previous value for b = b0 substituted in Jx.
Iterations are terminated if 1 − ǫ < (b · b0)/(||b|| ||b0||) < 1 + ǫ. The initialization of the
IQML and intermediate variable algorithms is performed by means of the Prony estimate
of the symmetric prediction polynomial. To avoid unnecessary iterations it appears that
ǫ set to 1.10−9 is sufficient. A different convergence criterion has been applied to the
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algorithm described in the appendix. This criterion consists in checking the goodness of
the realized constraint equations as described there.

The example selected for the comparison of the new algorithm with IQML is

yt = cos 2.1t + cos 2t + vt, (t = 1, . . . , 25) (7)

where vt is a bias free Gaussian noise with variance σ2
v. We have to show that both methods

give similar results and therefore we have scanned the performances in a range going from
5 to 30dB in steps of 5dB. Each time a Monte-Carlo simulation of 100 realizations has been
performed. The theoretically expected similarity of both methods is very pronounced for
25dB (σv = 0.0562) and higher onwards and for these SNRs the CRB is approached by

para- exact bias bias std. dev. std. dev. CRB
meter value IQML Int. Var. IQML Int. Var.

ω1 2.1 -.257E-3 -.922E-3 .7146E-2 .7116E-2 .7111E-2
ω2 2.0 -.734E-3 -.660E-4 .7850E-2 .7836E-2 .6925E-2
A1 1.0 .982E-2 -.165E-1 .6889E-1 .6906E-1 .6581E-1
A2 1.0 .975E-2 -.383E-2 .7449E-1 .7444E-1 .6555E-1
φ1 0.0 .141E-1 .173E-1 .1221 .1218 .1116
φ2 0.0 -.154E-1 -.156E-1 .1312 .1323 .1142

Table 1. Results of Monte-Carlo simulation comparing IQML and intermediate
variables for yn = cos 2.1 t + cos 2.0 t + vt, σv = 0.0562 or SNR = 25dB.

both methods equally well. Concerning the numerical performance we mention that we
have not optimized the numerical aspects of neither of the methods, and thus the IQML
implementation advocated by Hua [14] has not been considered. In practice in one iteration
step of both methods we require then one inversion of a N−2M banded symmetric matrix.
In the same iteration step in the new algorithm we further need a second inversion of a
N − 2M matrix but as a counterpart the IQML method requires a single eigenvalue and
eigenvector determination for a M + 1 matrix. By counting the iterations we note that
IQML required 34,3 iterations in the mean for 100 realizations, while this number was 33,2
when applying intermediate variables to obtain table 1. Also the execution times of the
tests were the same within 10%.

At 20dB the similarity of both results is still good. At lower SNRs convergence gets
rapidly problematic and fails systematically at 10dB when initializing with the Prony
estimates. The amount of secondary minima getting very close to the minimum variance
solution makes that it is only meaningful to empirically check consistency of both methods
by initializing them with the error free coefficients. By the way, this approach was taken
as well in reference [9] to check estimation consistency. The results at 5dB limited to
frequencies, are given in table 2. From this table we see that IQML yields a substantially

para- exact bias bias std. dev. std. dev. CRB
meter value IQML Int. Var. IQML Int. Var.

ω1 2.1 .260 .061 .2859 .1397 .0711
ω2 2.0 .015 .018 .0844 .0757 .0692

Table 2. Results of Monte-Carlo simulation comparing IQML and intermediate
variables for yn = cos 2.1 t + cos 2.0 t + vt, σv = 0.562 or SNR = 5dB.
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larger error for the larger frequency. This is in line with the theoretical considerations [8]
on the consistency of IQML estimates and empirical analysis made some years later [9]
which reveals that the classical IQML as used here is not consistent. This is particularly
conspicuous when operating very close to the resolution limit. That we are working close
to this limit is suggested by the results displayed in table 3, which deals with the same
case as in table 2 except that both frequencies are now spaced by 0.3. This time the CRB

para- exact bias bias std. dev. std. dev. CRB
meter value IQML Int. Var. IQML Int. Var.

ω1 2.3 .928E-2 -.111E-2 .3320E-2 .2946E-2 .2628E-2
ω2 2.0 .429E-2 -.312E-2 .4420E-1 .3044E-1 .2896E-1

Table 3. Results of Monte-Carlo simulation comparing IQML and intermediate
variables for yn = cos 2.3 t + cos 2.0 t + vt, σv = 0.0562 or SNR = 5dB.

is approached but clearly closer by the new method. To complete the picture we report
another case where IQML (and not the intermediate variable approach) converged in the
mean for 100 realizations to a secondary minimum, namely at 5dB with A1 = A2 = 1, φ1 =
φ2 = 0, ω1 = 2.5 and ω2 = 1.5 starting with perfect initial conditions.

Notwithstanding this slight superiority of the intermediate variable based algorithm,
IQML and exact least squares using the intermediate variable approach have a similar
complexity and a similar performance when employed as estimators in this case. The more
important conclusion is that the intermediate variables have thereby passed some kind of a
supplementary qualification test. Together with the favorable results obtained in an other
context, see [10], and in our note 1 before, this convincingly opens up the ability to truly
achieve optimal accuracies in a well feasible numerical context for a large class of problems,
where this had not been practicable hitherto.

APPENDIX

Minimizing constrained cost functions similar to (6) is a well known problem for
which working approaches can for instance be found in [15]. Specific in the present case
is the bilinear nature of fr. To explain the adapted calculation details, we reshape (6)
in matrix form and introduce the supplementary vectors Λ′ = |λ1, . . . , λN−2M | and f ′ =
|f1, . . . , fN−2M |. Equation (6) can then be written as

Q =
1

σ2
(y − x)′ (y − x) + 2Λ′f (8)

We further need the Jacobian of the constraint vector function, namely

(Jx)kℓ =
∂fk

∂xℓ

, (Ja)kℓ =
∂fk

∂aℓ

(9)

where Jx is a (N − 2M)×N and Ja is a (N − 2M)×M matrix. The bilinear nature of f

makes that
f ≡ Jx x ≡ Jaa + g(x) (10)

with g′ = |xM+1, xM+2, . . . , xN−M | which corresponds to the linear terms in (5).
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The constrained minimum is determined by taking the partial derivative of Q equated
to zero, or

∂Q

∂x
= 2{

1

σ2
(y − x) + J ′

xΛ} = 0 (11)

∂Q

∂a
= J ′

aΛ = 0 (12)

combined with the constraint equations themselves, namely f(x, a) = 0 already specified
in (10). The iterative solution of this non-linear system requires an initial value for x and
a, say a0 and x0. The subscript zero will further be used to identify vectors and functions
taken at the initial value of an iteration step. The first value can be obtained fixing x0

equal to y substituted in (15) and solving for a, or

a = − (J ′

a0 Ja0)
−1 J ′

a0 g0 (13)

in which one recognizes the extended Prony method as described in [16].

In all subsequent steps one achieves linearization by selecting the Jacobians at the
initial value (of the step) in (11) and (12), while for (10) we assume

f(x, a) = Ja0a + g0 = Jx0x (14)

From (11) we get

x = y + σ2J ′

x0 Λ (15)

Left multiplying this equation with Jx0 and applying (14) yields

Ja0a + g0 = Jx0y + σ2(Jx0 J ′

x0)Λ (16)

By introducing the shorthand U = J ′

a0 Ja0 the previous equation reduces to

σ2 Λ = U−1(Ja0a + g0 − Jx0y) (17)

To make use of (12) we left multiply (17) by J ′

a0 and obtain an update of a, namely

â = V −1Ja0 U−1 (Jx0y − g0)

with the abbreviation V = J ′

a0 U−1 Ja0. We introduce â into (17) to get Λ̂ which in turn is
introduced in (15) to provide x̂. One checks whether f ′(x̂, â) f(x̂, â) < ǫ where ǫ is preset
to 10−9. If the inequality is satisfied, the values for â and x̂ are taken as the solution,
otherwise we set x0 = x̂ as well as a0 = â and repeat the iterations until convergence
which was always reached in all cases treated also if not reported.
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