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DIRECTION SEPARATION IN HIGHER DIMENSIONS

Luc Fraiture†

INTRODUCTION

The subject of this note derives from the need we have had to count the occurrences
of random directions with the purpose to verify their distribution in particular areas along
the unit circle and on unit spheres up to dimension four. The questions we ask are of
a practical nature. One is the search for a subdivision of a spherical surface to identify
preferred zones. An other simple question concerns the vicinity, for instance ’which is the
co-ordinate axis a particular direction is closest to?’. The actual goal of this note is twofold.
First we want to introduce known mathematical insights which are complementary to the
introduction of our notes 8 and 10. Second we wish to gain some insights in verification
possibilities for random direction simulation in dimension four, namely there where our
pictorial imagination does no longer support us. What we then do with these directions
or how we generate them is a matter of statistics on the sphere for which an extensive
literature exists. In this respect we refer to the book by Mardia and Jupp1 and to our
Notes 8 and 10 which deal with the generation of random directions in limited geometries
on the sphere. The latter did, as far as we know, not get yet any particular attention.

DIRECTIONS AND VICINITY

Let us first agree that a direction is a unit vector v in an Euclidean vector space of
dimension n denoted by Vn. The components of such a direction v are the Cartesian co-
ordinates x1, . . . , xn. We further introduce the orthonormal base vectors u1, . . . , un parallel
to the positive co-ordinate axes. The latter vectors are important, because they also are
directions. The locus of the end points of all these directions is either a unit circle in the
plane or a unit sphere in Vn.

The measure of vicinity between two directions v1 and v2 in Vn is the angle θ12 between
these directions. To this aim we have the inner product at our disposition, namely:

< v1 · v2 >= cos θ12 (1)

algebraically defined by

< v1 · v2 >=

n
∑

i=1

x1i x2i (2)

employing the explicit unit-vector co-ordinate representation vk = |xk1, . . . , xkn|′, where
the accent denotes transposition. The closest directions among two unit vectors out of a
collection of m vectors (v1, . . . , vm) ∈ Vn are those with the largest value of cos θij with
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1 ≤ i 6= j ≤ m. The smallest cosines (close to −1) are usually considered to apply to
directions which are said to be axially close to each other. We can be more precise in
saying that the vector vk out of the collection (v1, . . . , vm) closest to the co-ordinate axis
uℓ is found from

xkℓ = sup
1≤j≤m

xjℓ (3)

But this may not necessarily be satisfactory, because even if xkℓ is the largest ℓ co-ordinate
in the collection scrutinized, the vector vk can still be almost 900 away from the ℓ−axis,
as we will see later. The direction vk closest to vℓ is obtained by the comparison of the
different values of θjℓ, or formally:

vk = sup
j 6=ℓ

cos θjℓ (4)

To go beyond these trivial vicinity criteria we have to focus on the geometry of spheres
mathematically denoted by the symbol Sn−1 in spaces of dimension n.

QUADRANTS AND ORTHOGONANTS

To describe the boundaries inside which directions can be confined, we will make use
of the geometry of the spherical surfaces and we logically start with the circle. The simplest
subdivision of the circle consists of the four quadrants bounded by the directions of the
co-ordinate axes: u1 and u2, u2 and −u1, −u1 and −u2, −u2 and u1. Also in this case,
checking in which quadrant a direction is located, is trivial. One just has to verify the sign
its co-ordinates.

In dimension three we add one dimension to the circle and the previous subdivision
is multiplied by two to take the two directions +u3 and −u3 into account. This yields
eight separate surfaces, one of which is depicted in figure 1. A hemisphere has still four
quadrants, but for the full sphere this name is no longer adequate. In view of what happens
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Figure 1. An orthogonant in dimension three

with such a partitioning of the sphere in higher dimensions we propose to use the name
orthogonant for these 2n surface units, to stress that each of these equal-shaped areas are
bounded and spanned by a complete basis of n orthonormal vectors.
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If we wish to proceed any further we have to complement the Cartesian co-ordinates
with spherical co-ordinates. The name spherical co-ordinates is the generic name for all
(n−1)-dimensional manifolds representing complete spherical surfaces in R

n just by the use
of trigonometric functions of angles. The polar co-ordinates are the spherical co-ordinates
for which there is a pole, which corresponds to a preferred direction coincident with one
Cartesian co-ordinate axis. We comply with the widespread convention to select this axis
to be un ∈ Vn. Further, xn, the last component of the unit vector v ∈ Vn, is set equal to the
cosine of a colatitude θ, or xn = cos θ, independently from the other spherical co-ordinates
of the manifold. Polar co-ordinates are unavoidable in odd dimensional vector spaces, in
contrast to even dimensions where one can chose between polar and non-polar manifolds.
For we need the surface of the complete spheres and of spherical caps, we wish to briefly
review hereafter the way to formulate and integrate the corresponding known integrals.

DEFINITE INTEGRALS ON SPHERES

What we propose to do in this section, is best explained by first giving the example
of dimension three. In that case the polar co-ordinates are:

x1 = cos α sin θ, x2 = sin α sin θ, x3 = cos θ

We are primarily interested in the integral yielding the value of the area of a spherical or
polar cap. In dimension three this corresponds to

∫ 2π

α=0

∫ θ0

θ=0

dS =

∫ 2π

α=0

∫ θ0

θ=0

sin θ dα dθ = 2π (1 − cos θ0) (5)

This also provides the surface 4π rad2 of the complete sphere by setting θ0 = π in the
previous integral. The differential surface element dS can be found from basic differential
geometry in the way explained hereafter.

Consider the orthogonal Cartesian co-ordinates (x1, . . . xn) and transform these co-
ordinates into the curvilinear co-ordinates (y1, . . . yℓ) by means of the following transfor-
mation:

x1 = X1(y1, . . . yℓ)

− − −
xn = Xn(y1, . . . yℓ)

where y1, . . . , yℓ are supposed to be mutually independent and ℓ = n for the parameteriza-
tion of a ball (or a circular disc) and ℓ = n−1 for a sphere (or the circumference of a circle).
The differentials of the Cartesian co-ordinates are mutually orthogonal infinitesimal line
elements equal to:

dxj =

ℓ
∑

i=1

∂Xj

∂yi
dyi (j = 1, . . . , n)

And because the world of our considerations is Euclidean, the square of the total resulting
infinitesimal displacement ds2 = dx2

1 +. . .+ dx2
n must remain the same in the transformed
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system. Thus

ds2 =

n
∑

m

dx2
m =

ℓ
∑

i

ℓ
∑

j

gij dyi dyj (6)

with the short hands

gij =

ℓ
∑

m

∂Xm

∂yi

∂Xm

∂yj
(7)

which are called the metric coefficients. All we need for our purposes are the metric
coefficients gii, because the polar/spherical co-ordinates of circles and spheres are such
that the metric coefficients gij all vanish when i 6= j. If more background is desired, we
refer to the very readable chapters VII and VIII of the classical book by A.P. Wills2. To
make the computation of the metric factors – appearing in the infinitesimal volume and
surface elements – plausible, we consider, as example, the polar co-ordinates y1 and y2 in
the plane defined by:

x1 = y2 sin y1 = r sin θ, x2 = y2 cos y1 = r cos θ

The computation of ds2 as a function of y1 and y2 then yields:

dx2
1 + dx2

2 = y2
2 dy2

1 + dy2
2 = r2 dθ2 + dr2

and the metrical coefficients g11 = gθθ = y2
2 = r2 and g22 = grr = 1. For a circle

with radius r0 the circumference is given by
∫ 2π

0

√
gθθ dθ and the surface is obtained from

∫ 2π

0

∫ r0

0

√
gθθ grr dθ dr. The metric factor for an infinitesimal arc element hereby appears

to be equal to
√

gθθ and for a circle-surface element we get
√

gθθ grr. Referring to the
spherical co-ordinates defined hereafter the metric factor for the volume element of a three
dimensional ball is

√
gαα gθθ grr, while for the surface element on S2 it is equal to

√
gαα gθθ.

Extrapolation to spheres of higher dimensions follows the same pattern.
The polar co-ordinates (α1, . . . , θ) on unit spheres in dimension n ≤ 4 have important

practical applications, and their correspondence with orthogonal Cartesian co-ordinates is
displayed in the overview given hereafter.

S1 S2 S3

x1 = sin θ = cos α sin θ = cos α1 cos α2 sin θ
x2 = cos θ = sin α sin θ = cos α1 sin α2 sin θ
x3 = cos θ = sin α1 sin θ
x4 = cos θ
dS = dθ = sin θ dα dθ = sin α1 sin2 θ dα1dα2 dθ

We now can compute the area of a polar spherical cap on S3. We have

∫ 2π

α2=0

∫ π

α1=0

∫ θ0

θ=0

sin α1 sin2 θ dα1 dα2 dθ

= 2π

∫ π

α1=0

sin α1 dα1

∫ θ0

θ=0

sin2 θ dθ = 2π (θ0 − 0.5 sin 2θ0) (8)
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Again, this yields the surface 2π2 rad3 of the complete sphere by setting θ0 = π in the
previous integral. Especially this case shows that a spherical cap of angular radius θ0

around the pole is a hyper-cone comprising all direction which are at an angular distance
of the pole comprised between zero and θ0 independent of what happens in the other
directions. The formulae for the area of the cap as a function of θ0 differs, of course, for
every dimension, as (6) and (8) demonstrate. In practice any direction v0 can be considered
to be a ’pole’ and apply (5) and (7) where θ is simply the angular distance from v0.

In many applications the polar axis plays a fundamental role and leads to consider-
ations about symmetry around this axis. Before we can address this aspect we need the
generalized meridian concept introduced in the next section.

FURTHER CARTESIAN BASED PROPERTIES OF DIRECTIONS

We further introduce geometrically oriented notions and properties, which all derive
from the definition of a meridian on a sphere with a pole v0 parallel to un ∈ Vn in dimension
n = 3 or higher.
Definitions

Let v⊥ be a unit vector such that v⊥ · v0 = 0, then the locus of all unit vectors
v = av⊥ + bv0 for any a and b with a2 + b2 = 1 is called a meridian through the pole v0.

There are (n−1) mutually orthogonal meridians at a pole on Sn−1 and they only meet
again at the anti pole where they are, of course, again orthogonal. By a base meridian Mj

we mean a meridian generated by uj and v0.
Consistent with the terminology just proposed we will call equator plane of the sphere

Sn−1, that part of the subspace orthogonal to un which is fully contained within the sphere
Sn−1. Hence, the locus of all unit vectors in the equator plane is equivalent to a Sn−2

(unit) sphere.
If a direction v is parametrized by signed arcs on base meridians Mj at the pole,

signed arc lengths will be denoted by ǫj and referred to as surface pseudo co-ordinates of
a direction.

The actual projection of ǫj on the co-ordinate axis uj with j 6= n is xj = sin ǫj ,
which paradoxically is a direction cosine. Let us first define an arbitrary unit vector ve by
means of its Cartesian components (xe1, . . . , xen) where the last component is along un by
convention. To verify the nature of the co-ordinates ǫj , we start from the transformation:

x1 = sin ǫ1, x2 = sin ǫ2, x3 = (1 − sin2 ǫ1 − sin2 ǫ2)
−1/2

valid for dimension three. Writing Q for 1− sin2 ǫ1 − sin2 ǫ2 the squared infinitesimal line
element (6) appears to be:

ds2 = Q−1 (cos2 ǫ1 cos2 ǫ2 dǫ21 + cos2 ǫ1 cos2 ǫ2 dǫ22 + 0.5 sin 2ǫ1 sin 2ǫ2 dǫ1 dǫ2)

The only points where ǫ1 and ǫ2 behave like orthogonal Cartesian co-ordinates are the
poles. Consequently, a relation like ǫ21 + ǫ22 = θ2 can only be accepted if ǫ1 and ǫ2 are very
small. Such approximations can be found in geometrical optics for narrow field of views3.
We can thus only employ the pseudo co-ordinates, if we go via the Cartesian co-ordinates
and stay away from the equator where x3 gets imaginary.
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Due to the fact that ve is a unit vector we have
∑n

i=1
x2

ei = 1 or equivalently
∑n−1

1
x2

ei = 1 − x2
en, but xei = sin ǫi for i < n, which makes that

sin2 θ =
n−1
∑

i=1

sin2 ǫi (9)

This at first glance strange equation is obvious if we realise that θ and π/2 − ǫi are both
colatitudes. We can further stress the ’pseudo’ character of the ǫi components by noticing
that

ve =
n−1
∑

i=1

sin ǫi ui ± sin θ un (10)

All this brought us to the idea that the simulation of the n− 1 mutually independent
uniformly distributed random pseudo co-ordinates directly on each base meridian must lead
to uniform distributed points on rectangles on the sphere. The projection of these points
on the equator yields a direction provided sin θ is real. This condition further requires that

0 ≤
n−1
∑

i=1

sin2 ǫi ≤ 1 (11)

is satisfied. If (11) applies we have found a random direction vector corresponding to a
uniform distribution on the sphere also in higher dimensions. Details of this method are
provided in our Note 10.

Let us once more consider (9), but this time in the light of sample property verification.
First of all, we have to assume that all unit vectors dk with 1 << k ≤ m of a given sample
are contained in one hemisphere with respect to the polar axis, excluding the equator itself.
Thereby all components (dk)n on the polar axis un have the same sign. In this way we
avoid the inclusion of part of the geometry where pseudo co-ordinates do not exist. Then,
taking the mathematical expectation of (9) means

sin2 θ =

m
∑

k=1

n−1
∑

i=1

(dk)2i (12)

This is particularly useful if there are enough data to compute the empirical covariance
matrix whose trace can then be compared with the theoretical expectation of the polar

colatitude ǫ whose value should be similar to θ = arcsin[(sin2 θ)1/2]. For modest and small
samples we refer to the book of Mardia and Jupp1, which is in any case worth consulting
when performing experimental statistics on S2.

GEOMETRY AROUND THE POLAR AXES

For we deal with the count of occurrences, symmetry must be understood as a prop-
erty of the probability of these direction occurrences, and more specifically of a probability
distribution function (pdf). For the purpose of discussing symmetry, pdf’s can be ex-
pressed as a function of the different manifolds we have introduced, thus, for instance, by
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Φ(x1, . . . , xn−1). We do not wish to detail here any other properties of pdf’s, except their
potential symmetry aspects. In this respect we differentiate between:
- Axial Symmetry (AS). This symmetry implies that

Φ(x1, . . . , xn−1) = Φ(−x1, . . . ,−xn−1) (13)

- Rotational symmetry (RS). This symmetry implies that

∂Φ(α1, . . . , αn−1, θ)

∂αi
= 0 for any i ≤ n − 1 (14)

- Rotational Uniformity (RU). RU assumes that the probability to have direction occur-
rences is the same on any meridian (and its vicinity) issuing from the pole, independent of
the probability distribution inside this neighborhood. This implies the following integral
property for any i 6= j :

∫ π

ǫi=0

Φ(sin ǫ1, . . . , sin ǫn−1)
√

gii dǫi =

∫ π

ǫj=0

Φ(sin ǫ1, . . . , sin ǫn−1)
√

gjjdǫj (15)

as far as (11) is satisfied. This statistical symmetry concept, which we did not meet in the
technical literature, may best be explained by the example of an unimodal error distribution
(this is a distribution which, in the present terminology, has a single probability maximum
in the direction of the pole) which is assumed to be AS. If moreover the corresponding pdf
is RU, it is equally probable to find random directions near meridians where large errors
are more probable as well as near meridians where small errors are more likely. To quote
another example, we consider a flat square (having the pole or mode in its center) filled
with uniformly and randomly distributed co-ordinate pairs. This distribution is not RU,
because one can expect more random points along the diagonals than along lines through
the center and parallel to the sides. The RU concept can be useful when it points to
the smaller/larger probability to be in (un)favorable directions in a control problem, for
instance.

Especially the detection and checking of rotational uniformity in higher dimensions
by means of counting requires further insight about the idea of proximity with respect to
meridians. In our imagination we are inclined to see the confluent meridians on the three
dimensional globe as something which could re-occur in higher dimensions. In dimension
three, however, the angle between two meridians is a dihedral angle, an entity which does
not exist in dimension four or higher. Otherwise the sum of such generalized dihedral
angles among all the base meridians and their negative sides would add up to an angle of
2n−1(π/2), which is impossible, if the definition of angles is based on an inner product, as
is the case here. We thus have to have recourse to more basic properties. Therefore, we
start by considering the normalized orthogonal projection vp of an arbitrary unit vector
v(x1, . . . , xn) ∈ Sn−1 onto the equator not bothering about the fact that vp ∈ Sn−2. In
this way we obtain the following direction cosines of vp in the equator:

cos ωi =
xi

√

1 − x2
n

=
sin ǫi

√

1 − x2
n

(i = 1, . . . , n − 1) (16)
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because any vector in the equator is orthogonal to un. But the direction cosines xpi = cos ωi

of vp must satisfy:
n−1
∑

i=1

cos2 ωi = 1 (17)

because we are dealing with a unit vector. Consequently, we can state that

n−1
∑

i6=j

cos2 ωi = sin2 ωj (18)

These relations allow to practically resolve the question about the closest proximity to
a Cartesian co-ordinate axis on the basis of the following simple but, in this context,
nevertheless important theorem.
THEOREM. If a direction v ∈ Vn makes an angle ωi of less than ±450 or equivalently
±π/4 rad with the co-ordinate axis direction ui, then the angles v can make with any
direction orthogonal to ui are all larger than π/4 in absolute value for 2 ≤ n.
PROOF. By reconsidering (18) we can say that

cos2 ωi ≤ sin2 ωj (i 6= j)

where ωj , the object of the theorem, is the angle which v ∈ Vn−1 makes with uj , while
ωi is the angle between v and an arbitrary base vector ui with i 6= j. Restricting our
considerations to the first quadrant, previous inequality means that

π

2
− ωi ≤ ωj

If now ωj < π/4 we have π/2 − ωi < π/4 and thus π/4 < ωi, as claimed. For this
argument can be repeated for any angle ωi 6= ωj , the theorem is verified.

The previous theorem applies to the projections of a direction onto two arbirtrary mutually
orthogonal vectors in any dimension, because we can always add a third vector orthogonal
to the two first and this latter vector can be considered to be the pole in a higher dimension.

ISOLATING PARTS ON SPHERES IN HIGHER DIMENSIONS

There are two major areas of practical interest. The first involves complete spheres for
which a large number of efficient statistical analysis criteria and algorithms are available
in dimension two and three for small and medium size direction samples1. In dimension
four and certainly in higher dimensions the available techniques are limited. The second
area of interest deals with limited parts of spherical surfaces centered around a pole, with
practical applications in simulations4 and the statistics of direction estimation errors also
in the case of dimension four.

Distribution of Spherical Caps on the Sphere

As a consequence of the previous theorem, one can add a spherical cap with an arc
radius of π/4 rad at the end of each of the 2n positive and negative ends of co-ordinate
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axis directions. This provides an ability to subdivide a sample of directions into sets being
closest to a particular positive and/or negative co-ordinate axis. In dimension two this
subdivision covers the complete circle, because the proposed caps are in fact arcs of 900

length. In dimension three the caps of 450 arc radius do not longer cover the sphere. This
is shown in Fig. 2 with a three dimensional orthogonant containing three mutually tangent
quarter-caps. Not covered by these caps is an improper spherical triangle ABC enclosed
between the caps. The center of this triangle denoted by N in the figure, which will further
be called ’neutral point’, has its three direction cosines all equal to 1/

√
3 corresponding to

an angle of θ∗n = θ∗3 ≈ 54.7630. By inspecting the figure more closely we see that the caps
do not contain all the directions closest to a co-ordinate axis. For x3 this would be the
spherical quadrangle X3ANC composed of two (canonical) spherical triangles whose arcs
and dihedral angles are known except the arcs AN=NC, which can be computed by means
of the cosine rule. This yields cos AN =

√
2/

√
3. Gluing all these quadrangles together at

the six co-odinate axis ends yields a regular spherical cube composed of six equal spherical
squares known in geometry. Applying (3) to the absolute values of the co-ordinates of the
directions

x

3

2

x

1x

C
A

B

Figure 2. Spherical caps and the neutral area
n in dimension three

N

yields the closest co-ordinate axis, but in dimension three this can already be as distant
as θ∗3. Depending on the problem at hand, we may require a refined answer by checking
the exclusive presence in a cap, but this ability ends with an arc-radius bound by π/4 in
any dimension. In practice, we may also verify whether a direction, which was has not
been identified to fit into one of the 450-caps, is located inside the spherical cap around the
neutral point N with an arc radius of 54.7630 − 450. There could be two practical reasons
for this. First, accumulation of directions at symmetry points like N may be desired or,
on the contrary, may result from undesired simulation implementation features. Second,
the verification with a cap around the neutral point N is still easy to implement in higher
dimensions.

In dimension three, 93.6% of the total surface of S2 is covered by the sum of the 450

caps and the caps around the neutral point, leaving little uncertainty with respect to the
identification of distribution deviations. One can achieve 100% coverage if one subdivides
S2 in its six equal great circle spherical squares whose corners coincide with the eight
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neutral points (a spherical hexahedron). The question is whether the added value of 6.4%
of coverage is worth the trigonometrical analysis and coding.

The efficiency of coverage verification rapidly decreases with increasing dimensions.
This decrease is compensated by the fact that we can, in principle, compute the size
of all areas involved for all finite dimensions. To understand the way these areas can be
evaluated, we have to get an idea of the structure of an n-dimensional orthogonant starting
from Fig. 2. Let us take the orthogonant coinciding with all positive co-ordinate directions.
In the n corners, if we are still allowed to call them so, there are n caps of 450 and each
of these caps is tangent to all the others. Between these caps there is still a neutral point
whose direction cosines are all equal 1/

√
n. In between these caps the improper triangle

has been replaced by a surface which we could imagine to be a spider with n legs having a
neutral point in its center. Thus, the surface of the total sphere minus the surface of the
2n 450 caps yield the surface of the 2n spiders. The area of a single spider contains the n
contributions of the n single co-ordinate directions ( by the selection of the orthogonant
here all positive). In dimension four the coverage with eight 45 degree caps and the sixteen
caps around the neutral points in each orthogonant approximately represents 78,6% of the
total spherical surface.

Combining Caps and Colatitudes

If we consider distributions of directions around a pole, the selection of a pole is
already a reason to look into the distribution as a function of the colatitude. To that

Q
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/4
/4π

π

θ

θ1

A

B

P

R

j
Figure 3. The combination of caps with 
               co−ordinate axis proximity

purpose one may conceive a number of (hyper)rings around the pole for which the surface
area is easily computed based on integrals formulated with polar co-ordinates. Once we
know that the colatitude θ of a direction v is in an area bounded by θ1 and θ2 we are
left with the question: ’where is it located around the pole?’. The projection of of v into
the equator allows the identification of the closest co-ordinate axis direction, as explained
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before. This geometrical situation is depicted in Fig. 3. The subdivision of the equator
in 450 caps only covers all directions if we consider polar co-ordinates on S2. If we deal
with polar co-ordinates on S3, the equator is a S2 sphere and then the technique suggested
in Fig. 3 involves neutral points and neutral caps, as explained before. By increasing
dimensions this neutral area increase, and this is the theme of the last section.

THE PSEUDO-ORTHOGONALITY PHENOMENON

The subject of this section is of a pure mathematical nature and deals with a curiosity
which may suggest some philosophical questions.

Summarizing what we have said in the previous sections, we know that an orthogonant
on Sn−1 is bound by n end directions of orthogonal co-ordinate axis (positive or negative).
At each of these n orthogonal directions we can attach a 450 spherical cap and each of
these caps is tangent to each of the n − 1 other caps bordering the orthogonant under
consideration. In each orthogonant there is a neutral point equidistant to all n orthogonal
axes bordering that orthogonant. The corresponding angular distance φ of this neutral
direction to any of the co-ordinate axes of the orthogonant is equal to arccos(1/

√
n). We

are for each dimension able to define caps around these neutral directions, whose arc-radius
is equal to φ−π/4 which are tangent inside an orthogonant to each of the 450 caps around
the co-ordinate axes. The point is that limn→∞ φ = π/2. By approaching this limit for a
given still finite value of n we get the impression that the 2n neutral points are co-ordinate
axes as well, and if this were true we had at once dimension 2n+1. But this brings us closer
the limit and if we could take the first step in a good approximation, the next applies to
an even better approximation. In principle this process, once started and brought to its
end finishes with a mathematical explosion of the dimensionality.

In practice we will not suffer from this effect. The weak point of the argument is
the assumption of ’for a still finite value . . . in a good approximation’, because the
explosion which would take place could not be reverted to the original situation, where
1/

√
n could not be restored to the original value still a minute but nevetheless finite ε

away from the limit. In fact this 1/
√

n is not an approximation but an exact number. All
this is reminiscent of the law of large numbers in probability.
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