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MECHANICALLY INDUCED SEA LEVEL CHANGES
APPLIED TO GREENLAND’S ICE COVER
DISAPPEARANCE OR DOUBLING

Luc Fraituref

INTRODUCTION

In this note I deal with a subject I looked at two decades ago. My interest had been
triggered by the book over the ice times'. In this book it was tacitly implied that sea level
variations resulting from ice shield melting or forming was uniform all over the oceans. In
my mind the question arose:”Is it so, that the sea level rises more or less the same amount
everywhere if important ice shields melt somewhere and does the reverse apply if big ice
shields are building up somewhere on the globe?”. Clearly, the Center Of Mass (COM) of
the Earth is affected by this process and it was immediately obvious to me that there was
more to it.

We not only have the shift of the COM, but also the orientation of the rotational
equilibrium axis of the Earth (called spin axis) may undergo a slight shift if the Green-
land ice melts. Even if this reorientation, known as polar wandering, is minute at global
terrestrial level it may nevertheless be sufficient to influence the orientation of the oblate
envelope of the mean ocean surfaces and cause sea level variations which are different at
different latitude and longitudes and which are not everywhere negligible for us humans.
These different aspects are analyzed for the specific case of Greenland by verifying what
would happen if its present ice shield would either melt completely or, in contrast, double
its volume. It will be shown that the mechanically induced sea level variations are not
the same in different oceanic regions, including both increase and decrease. The combined
consideration of these phenomena, which are only applicable to an either remote past or a
far future, is likely to be novel, but the dynamical principles and the geometry behind it,
are really very basic.

The subject is, of course, also interesting for people without the mathematical back-
ground implied in the quantitative derivations of the different contributions to the sea
level variation. Therefore, we have inserted the next section which tries to coarsely explain
“what is a center of mass” and “what is, in this context, the simple relevant behavior of
the polar axis of the Earth”. These properties apply to rigid (undeformable) bodies and
the Earth is more or less rigid except the oceans. Exactly here is the link with the sea
level which has the properties of a fluid element on one hand and continental ice shields
which are rigidly bound to particular fixed geographical areas on the other hand.
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MECHANICAL REASONS FOR MEAN SEA LEVEL VARIATION

In most popular articles on sea level changes one generally assumes a simultaneous
and equal rise or fall of the mean sea level all over the oceans in all circumstances. Such an
assumption may be reasonable if one considers the dilatation or contraction of the seawater
volume due, for instance, to a global temperature variation. Here we only consider sea
level variations which have to do with the melting or formation of ice shields with a
continental support, but not the global redistribution of water in the case of melting,
or its global subtraction when considering ice shield formation for which we refer to the
literature?. The case of Greenland will show that quantities of water or ice which are
sufficient to change the global sea level in a measurable way are also sufficient to affect
the dynamical equilibrium of the Earth and thereby require measurable and different sea
surface adaptations all over the Earth.

To understand what happens we propose to perform a virtual experiment. For this
purpose we consider two deep frozen water balls each with a mass of 5 kilogram whose
centers are at both ends of a fully rigid but weightless rod of 10 meters length as depicted
in Fig. 1.

left C x right

Fig. 1. Centre of mass between two ice balls of un/equal masses

The center of mass (COM) denoted by C is exactly in the middle of the rod, because
measured from C the product (mass = 10 kg) times (distance to the center of the ball =
5 m) is the same on both sides. Let us now heat the left ball slightly so that exactly 1 kg
of its ice melts away from all over its surface and thereafter cool the ball again. The new
COM is shifted to the right of C to the point X by a distance x which is computed in the
same way. The product 4 kg times (5 4+ x) m for the left ball must be equal to 5 kg times
(5 - x) m. Basic algebra yields a shift of x = 0.555.. m. In a next step the one liter molten
water is evaporated and is condensed equally on both spheres. We then end up with a left
sphere of 4.5 kg and the right sphere with 5.5 kg (neglecting the difference of surface area
of the left sphere which had become slightly smaller and assuming no condensation on the
weightless rod). By this condensation process the COM again partly shifts to the left to
the point Y by approximately 30 cm and thereby we terminate the virtual experiment. The
comparison with the Greenland ice is simple. The Greenland ice melts and (forgetting a
while the global redistribution of the resulting water) the COM of the Earth slightly moves
in the direction of the antipode of Greenland located in the Antarctic south of Australia.
The sea level will decrease by a few meters around Greenland, will almost stay constant in
equatorial regions and rise around the Antarctic. But there is still the molten water which
needs to be distributed over the oceans and, taken separately, this corresponds to an equal
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increase of the sea level all over the Earth. For the magnitude of the sea level rise/fall due
to the uniform distribution of the molten Greenland ice over the oceans or alternatively
in the case of sea level decrease due to the water removal, we rely on available material?.
This is also true for the estimate of the volume of ice masses involved.

It is not really possible to describe in a few lines why the spin axis of the Earth
undergoes a slight change if the Greenland ice completely melts or doubles in size. The
simplest, may be, is to refer to a wooden spinning top from which a very small piece is
cut off its side far from the symmetry axis. Normally, the top will still be able to spin and
wobble around. The actual spin axis fixed inside the rigid wooden body will, however,have
moved slightly. We mean that the top will no longer rotate exactly around the same axis
we had before. The same happens with the Earth. But even if the effect is minute, the sea
has to move to bring the equatorial bulge into the new position perpendicular to the new
tilted spin axis. This is equivalent to slightly rotate an ellipse in a plane around its center.
This ellipse is the idealized mean Earth cross section which we obtain if we cut the Earth
with a plane which goes simultaneously through the previous and the new rotation axis.
This effect will only be measurable at mean north or south latitudes, switching sign at the
poles and the equator and hence being negligible at the poles and the equator themselves.
At longitudes more or less perpendicular to the afore mentioned plane the effect vanishes.
The sizes of actual polar wandering we have computed are too small to give rise to any
even small climatic change.

If there is no interest in the mathematical derivations, which follow in the next three
sections, one can directly go to the discussion of the predicted sea level contributions
thereafter.

GREENLAND AND THE COM OF THE EARTH

We start from the assumption? that the volume of ice covering Greenland is approxi-
mately equal to 2.85 10 km3, and 1. km® = 10'2 dm?. Knowing that 1. dm? corresponds
to the volume of a liter of normal water, the Greenland ice approximately corresponds to
a mass M, of 2.85 10'® kg. This figure must be compared with the approximate Earth
mass for which we rely on the value®* M, = 5.974 10%* kg.

The present COM of the Earth is put at the origin of a conventional geodetic co-
ordinate system®. The x-axis of this system is in the direction of the unit vector (i) going
through the Greenwich Meridian at latitude zero, the z-axis (k) points to the North Pole
at a latitude of +90°. The positive y-axis (j) crosses the equator at 90° East. To find an
approximation of the COM of Greenland we have divided its mass into 17 big equal parts
spread over the island in an approximate manner. This partitioning is described in the
appendix. The geodetic latitude and longitude of the COM of the Greenland ice, obtained
in this way, are 72.38° N and 43.38° W, respectively. Its distance R, from the Earth center
is 6358.71 km. The position vector rg of this COM thus corresponds to

rg = R, (cos43.38° cos72.38° i — sin43.38" cos 72.38° j + sin 72.38" k) (1)
We can now write down the formula for the COM of the total Earth (henceforth abbreviated
by COME) consisting of two essential masses: one the Greenland ice mass M, and the

other corresponding to the rest of the Earth, namely M, — M,, whose COM position vector
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is represented by r. with respect to the present COM, located at the origin, for the whole
Earth. This very basic formula reads:

0 = Myrg + (M. — My)re (2)
and consequently the COM of the Earth without the Greenland ice is located at

- Mgrg %_Mgrg (3)
M, — M, M,

e =

Unexpectedly, the magnitude of re is not a few mm, but 3.018 m. If we assume that the
Greenland ice had suddenly disappeared (without adding the molten water to the oceans),
the COME shift would occur instantaneously. In that imaginary case the sea level in the
vicinity of Greenland would be 3. m above equilibrium and at the antipode (the direction
of re) one would be 3. m below. This situation just depicted would stay so if the Earth
including the oceans was completely rigid. The new COME, however, is no longer the
center of figure of the mean geoid surface, which essentially involves the oceans. There is,
in fact, a layer of 3 m water at the surface of the oceans which has to move 3 m in the
direction of the COME shift re in order to achieve a new equilibrium of the mean ocean
surface. We know that a mass, more or less symmetrically distributed over the surface of
a sphere, has its COM close to the center of that sphere, here approximately 3m from that
center. For 3.0 M, << R, M,, we can assume that the adaptation of the sea surface has no
measurable impact onto the COME. This argument also applies in a good approximation
to the water to be added or subtracted from the oceans as a consequence of the melting
or forming of an ice shield somewhere on the Earth.

At an arbitrary sea level position P with the geocentric latitude A, and position vector
rp(Ap) we may also expect a level change s, due to the COME shift. In the present case
this will be limited to —3.m < s < 4+3.m. This change is a function of both the latitude
Ap and the longitude €, of the point P.

Let us briefly explain how to compute the value of s, which corresponds to a projection
of the COME translation re, given in (3), onto the unit vector v representing the local
vertical directed outward of the geoid. To start with, we assume that P is located onto
the Greenwich meridian. The position vector there is represented by

r(Ao) = a. cos\gi + be sin \gk (4)

where a, is the equatorial and b, the polar radius of the Earth. The subscript zero is added,
to stress that we are on the Greenwich meridian where r(Ag) # r(Ap) but [r(Xo)| = |r(Ap)].
Computing the vector dr(\)/0\ yields the not normalized vector along the tangent in the
direction of an increasing value of A\. From this, one directly derives the value of the unit
vector perpendicular to the tangent, namely vq, or:

be cos A\gi + a. sin \g k
\/bz cos? \g + a2 sin® \g
= vopi 4 vo. k (5)

Vo =
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To bring vg to the actual point P we apply a rotation around the polar axis by the angle
e knowing that a West longitude corresponds to a negative angle. We end up with.

Vp = Upg COS€i + vo, sinej + vo. k (6)
The actual mean sea level change s, at P is then simply
$p =< Vp, T'e > (7)

where <, > is employed to represent the scalar or internal product of two vectors.

Equation (3) is linear and consequently the sign of the result is simply inverted if we
double the present Greenland ice shield. To be explicit, if the ice shield grows the COME
moves towards Greenland and thus away from the antipode. In this case the mean sea
level at equilibrium theoretically rises at least 3 m around Greenland before subtracting
the sea water quantity used up by the ice shield formation.

THE MODIFICATION OF THE TERRESTRIAL INERTIA TENSOR

Based on the breakdown of the Greenland ice shield described in the appendix, we can
approximate its inertia tensor N, with respect to the geocentric co-ordinates used hitherto.
On the basis of the formulae given at the end of the appendix we find:

0.109184 0,55920110~2 —0.23716510~!
N, = 10** | 0.559201 102 0.109776 0.22388510~* (8)
—0.23716510"1  0.22388510~'  0.11522210~!

This has to be compared with the tensor applicable to the Earth®, namely:

0.8008 0.0000 0.0000
N, = 10%® [0.0000 0.8008 0.0000 (9)
0.0000 0.0000 0.8034

whose eigenvectors are the co-ordinate axes and the eigenvalues are here the corresponding
diagonal elements. We further have to consider the inertia tensor which belongs to the
water to be added to or subtracted from the oceans, which we assume to be a layer around
the complete Earth considered to be sphere with radius R,,= 6371.0 km and mass M,.
The inertia of such a surface sheet around any geocentric axis is known to be equal to
w = M, R2?.. For our problem this corresponds to an inertia matrix N,, = w I3, where I3
is the three dimensional unit matrix.

Let us first consider the scenario of the disappearance of the Greenland ice. The new
terrestrial inertia is then given by

Nnpo—ice = Ne — Ny + w3 (10)

The new spin axis inertia or largest eigenvalue of N,,,_;c. is augmented by 1.036688344 1032
leading to a very faint despin. This means that the length of the day must have increased
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during ice time periods with deep glaciation, but this is out of the scope of the present
analysis.

More important for us is the orientation of the new spin spin axis in original geocentric
co-ordinates. The unit vector of this spin axis has the following components.

r, = 0.911849824359290 104
ys = —0.860792226009157 10~*
zs = 0.999999992137833

which corresponds to a tilt of the axis by 0.0071847°.

This time the computations of eigenvalue and eigenvectors are, in fact, no longer
linear. We thus have to verify that the difference of numbers involved are small enough
to give a more or less identical but opposite result for the doubling of the Greenland ice
shield. We have verified that this is the case for the spin axis resulting from the inertia
tensor:

N2><ice = Ne + Ng - U)I3. (10)

CONSEQUENCES OF A SMALL POLE WANDERING

Geographically the previous figures correspond to a pole displacement or 'wandering’
of not more than 800.0 m. The tilt is a move towards Greenland on the meridian at
43.35° W which we call the Greenland meridian, now considering a full great circle which
lays in the Greenland reference plane. At first glance the computed value may seem fully
negligible, but, in fact, it is not. Let A be an arbitrary geocentric latitude on the Greenland
meridian on the Atlantic side of the Northern hemisphere before the ice had disappeared. It
will then be at a latitude of A — 0.0072° after the ice shield has molten. The geoid has been
tilted around an axis perpendicular to the Greenland reference plane implying that the
local geoid shape, which adapts to the natural oblateness of our planet, remains unchanged
at the two points where this rotation axis intercepts the equator. A maximum adaptation
is to be expected on the Greenland meridian itself. There an arbitrary geocentric Earth
radius at ro(xo, Yo, 20), with the original latitude Ao, will become latitude Ag — 0.072° and
consequently the geocentric Earth radius will simply vary by

d(Ng) = \/ag cos2(Ag — 0.00720) + b2sin?(N\g — 0.00720)

- \/az cos2 \g + b2sin? \g (11)

Just like in (7) for the COM adaptation, we have to project the unit vector rq/||rg|| onto
the local vertical vo multiplied by d(\g) to obtain the local sea level variation, or

< Trg, Vo >

[Irol]

So — d()\o) (12)

Let us now turn to an arbitrary point P, not located on the Greenland meridian with
the geocentric position vector rp(x,, yp, 2p), the latitude A, and the longitude €,. In that
case the geometry gets slightly more involved. This is due to the fact that the virtual
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wandering of the point P is not a rotation but a redefinition of a fixed geocentric position
in a new slightly tilted ellipse with semi-major and minor axis a, and b, contained in
a plane parallel to the Greenland reference plane. This is partially depicted in Fig. 2,
which represents the terrestrial equator with the projection of the Greenland reference
plane and the corresponding parallel plane containing P. We also introduce an alternative
geocentric co-ordinate system, shown in the figure, in which the new z’-axis is no longer
linked to the Greenwich meridian but now to the perpendicular to Greenland reference
plane on the Atlantic side or at 90° 4 43.38° W. This corresponds to a rotation with an
angle 3 = —133.38" around the z-axis, which itself remains unchanged. It will thus be
sufficient to replace ¢, by €, = ¢, — [ to obtain zj,,y,, 2, in the new coordinate system.
Next we have to characterize the projected ellipse contained in between the points C and
D on the equator, noting that a, is equal to half the length of the line CD. The length Nb

is equal to z;, and consequently a, = /a2 — x}7.

"IN PUR|USRID

Fig. 2 Equatorial projection of the point P moved on an ellipse
in the plane with projection CD.

On the other hand, the value of the semi-minor axis is the length of the perpendicular on
the equator at the point b up to the circumference of the ellipse going through the spin
axis at N, thus corresponding to (4) where the (so far unknown) angle a has to replace \,.
Thereby, we observe that x; = a. cosa, providing the value of . Hence, b, = b.sina
is defined. Finally, we have to determine the angle v in the smaller ellipse, with the yet
known major axes a, and b,. The angle v is enclosed by the vector perpendicular on AB to
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the point P inside the plane of the smaller ellipse on the one hand and the semi-major axis
ap of this ellipse on the other hand. From Fig. 2 we see immediately that yz’y = ap Cos7.
We further know that z, = b, sinvy defining v uniquely by v = arg(z,/bp, y,/a,). The
change of the distance to the rotation axis AB is then

d'(N\p,€p) = \/ag cos? (v, — 0.00720) + b2 sin*(7, — 0.0072°)

- \/ag cos?y, + b2 sin? 7, (13)

This yields a level change whose direction is perpendicular to the rotation axis AB and

Table 1.Equilibrium induced sea level changes in the Northern Hemisphere
due to the melting of Greenland’s present ice shield.

City Country latit.? longit.® Acom Ap.w. Total
Nordvik Russia 73.53 110.28 -2.75 0.13(1.46) -2.62
Barrow US 71.28 -156.78 -2.74  -0.65(1.64) -3.39
Hammerfest Norway 70.65 23.82 -2.73  0.65(1.68) -2.08
Iqaluit Canada 63.72 -68.50 -2.55 1.93(2.14) -0.62
Bergen Norway 60.38  05.32 -2.51 1.53(2.31) -0.98
Amsterdam Netherlands 52.35 04.92 -2.29 1.73(2.60) -0.56
Vancouver  Canada 49.25 -123.12 -2.26 0.48(2.66) -1.78
Boston US 42.35 -71.05 -1.87 2.23(2.68) 0.36
Kushiro Japan 4297 144.45 -1.86 -2.66(2.68) -4.52
Lisbon Portugal 38.72 -09.12 -1.76  2.17(2.62) 0.41
Shanghai China 31.00 121.40 -1.34  -2.29(2.37) -3.63
New Orleans US 29.95 -90.07 -1.44 1.60(2.32) 0.16
Taipeh Taiwan 25.03 121.52 -1.07  -1.99(2.05) -3.06
Karachi Pakistan 24.87 67.03 -1.33  -0.71(2.04) -2.04
Havana Cuba 23.12 -82.35 -1.09 1.51(1.94) 0.42
Honolulu US 21.30 -157.85 -1.17  -0.75(1.82) -1.92
Acapulco Mexico 18.87 -98.42 -0.99  0.94(1.64) -0.05
Madras India 13.07 80.27 -0.72  -0.66(1.18) -1.38
Paramaribo Suriname  05.82 -55.17 -0.01  0.53(0.54) 0.52
Singapore Singapore  01.28 103.85 -0.03 -0.10(0.12) -0.13

consequently we have to use the normalized direction rp, = a,cosy j' + b,siny k’. The
local vertical v, is to be computed with respect to a meridian going through P and the
North pole. The actual size of corresponding component of the sea level change is

< Trp, Vp >

[Irp]]

sp = d'(Ap; €p) (14)

If A\p in (11) and v, in (13) are positive latitudes, we have 0 < d(Ag) and 0 < d’'(Ap, €p),
provided the longitude referred to is within 90° from the Greenland meridian. This follows
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from the following first order development in function of a small positive e:

d*(e) = a*cos*(A —¢€) + b?sin?(\ — ¢)
~ d*(0) + e(a® — b?) sin 2\

provided b < a, what is the case in our application. It is thereby conspicuous that the
values of d have an extremum at latitudes of +45° and are close to zero at the poles and
the equator.

NUMERICAL RESULTS

Summarizing, we have first obtained a COM shift of approximately 3m in the direction
of the Antarctic South of Australia if the present Greenland ice melts. Second, we have
found out that in these circumstances the North pole moves 0.0072° towards Greenland.
If, in contrast, the ice cover would double its size the previous values apply in a very
good approximation but with inverted directions. The sea level change, due to the COM
shift, is computed with respect to the Earth center and has to be projected onto the local
vertical of a specific geographic place. This is explained in the third section and the actual
projections are represented by Acops in the tables 1 above and 2 hereafter.

The effect of the pole wandering is geometrically more involved and the way to com-
pute the projections on the local vertical, represented by A, ,,. in table 1 and 2, is presented
in the previous section. The projection as such always leads to smaller figures than those
predicted theoretically and not taking the local vertical into account.

Table 2. Equilibrium induced sea level changes in the Southern Hemisphere
due to the melting of Greenland’s present ice shield.

City Country latit.Y longit." Acon  Apw. Total
Ushuaia Argentina  -54.78 -68.28 240  -2.30(-2.53) +40.10
Stanley Falklands -51.70 -57.85 2.33  -2.53(-2.62) -0.20
Dunedin New Zealand -45.70 170.50 2.10 2.23(-2.69) +4.33
Punta Delgada Argentina -42.77 -63.62  2.05 -2.51(-2.68) -0.46
Hobart Australia -42.92  147.32 2.06 2.63(-2.68) +4.69
Wellington New zealand -41.28 174.77 1.92 2.10(-2.66) +4.02
Buenos Aires Argentina -34.58 -58.67 1.76  -2.42(-2.51) -0.66
Cape Town  South Africa -33.92 18.42 1.52  -1.18(-2.49) -0.34
Santiago Chile -33.45 -70.67 1.68  -2.20(-2.47) -0.52
Brisbane Australia -27.50 153.02 1.46 2.11(-2.20) +3.57
Curitiba Brazil -25.42 -49.25 1.41 -2.07(-2.08) -0.66
Port Louis Mauritius -20.15 57.48 0.83 0.33(-1.74) +1.26
Papeete Polynesia -17.52  149.57 1.03 1.50(-1.54) +2.53
Lima Peru -12.05 -77.03 0.69 -0.91(-1.10) -0.22
Luanda Angola -08.88  13.23 0.35 -0.45(-0.81) -0.10
Jakarta Indonesia -06.17 106.82 0.42 0.50(-0.57) 40.92
Belém Brazil -03.92 -69.62 0.33  -0.33(-0.37) +0.00




All towns selected in tables 1 & 2 are located on - or are very near to a coast line. The
break down in North and South hemispheres shows the systematic effect of latitude on the
value of Acon. The variation A, . is more versatile. To make the effect of longitude
visible, we have added the value of A,,, in brackets, representing the case where the
town of a given row would be located on the Greenland meridian (at Western longitude).
The latter numbers clearly show the extrema at + and —45° latitude and the vanishing
contribution on the equator.

The columns with the totals do not consider the 7.3 m general sea level increase? due
to the distribution of the water resulting from the molten Greenland ice shield. Although
the figures of table 1 & 2 are not negligible, they are not able to offset these 7.3m. On
the contrary, in the case of sea level rising, they may aggravate the situation especially for
New Zealand and around the South-East of Australia and Tasmania. In the opposite case
(the more probable for the next 10,000 years), with formation of new and the increase of
existing ice shields in the high North, the sea level will thus decrease all over the world,
but not everywhere by the same amount. It looks as if we presently are in a period of
high sea levels. The ’quick’ melting of the Greenland ice, should it further dramatically
accelerate, will at any rate require at least many centuries as Earth observation satellites
of ESA and NASA seem to confirm. Thus more than time enough for mankind to adapt,
as it did ever since historical times when living conditions changed in densely populated
areas in coastal regions for whatever unescapable reasons.

More interesting than unreasonable panicking is to look into the paleolontological
past, for which polar wanderings of many degrees have been reported to have occurred in
very remote periods of Earth’s history. The analytical formula for the sea level change ex-
perienced at 45° colatitude (the extremum) from the original North pole — on the meridian
containing the old and the new pole — for hypothetical pole wanderings denoted by 7 can
be derived from (11). We get

d,(45%) = \/az cos2(450 — 1) + b2sin® (450 — 7)

— \/ag cos? 450 + b2 sin? 450

To compute the angle between the local vertical and geodetic position vector, namely
v and rg we first introduce the shorthand a,, = /a2 + b2. Let us write ¢ for either cos
or sin45° and consider the x, z-plane to construct the necessary two dimensional vectors
where the geodetic direction is given by rg(cae, cbe ), the not normalized tangent at geodetic
latitude 45° has the components (—cae, cb.) and finally the outward directed local vertical
has the components (b./a,,+ae/a,). Performing the normalization of rqg yields in this
particular case a value of s in (12) now equal to

2a. b,

St (450) = d7— (450) m

(16)

The angle 6 between the local vertical and the geodetic position vector is, in the specific
case of a latitude of 45°, independent of 7 and can be found from cos = 2a.b./(a? + b?).
Its value is equal to 0.99999436, corresponding to an angle § = 0.19°, thus altogether of
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no influence upon the result of (16). The value of d,(45%) is a fairly linear function of 7
for |7| < 5° and at 5° we would have the cataclysmic value of a sea level change of 1866.0
m or almost 2. km. For a pole wandering of one degree we still find 373.24 m and if the
meridian of wandering would move towards Italy, for instance, the pole shift could dry out
most of the Mediterranean. Thus spin axis wandering may be at the origin of large sea
level changes at mid latitudes. Nevertheless tilt angles larger than a few tenths of a degree
are improbable if we see that the Greenland ice is causing a shift of not more than 0.0072°.
The large pole wanderings reported in the literature can only be understood physically if
they were the result of a multitude of small steps.

APPENDIX

To model the basic dynamical parameters of Greenland we have subdivided the island
into 17 points, each with the same mass. This selection is largely arbitrary. Each point is
defined by its North Latitude and West longitude as tabulated hereafter.

Table 3. Position definition of the breakdown of the Greenland ice mass.

lat. N long. W lat. N long. W lat. N long. W

1 62.0 47.0 2 64.0 48.0 3 66.0 48.0
4 68.0 45.0 5 68.0 35.0 6 70.0 46.0
7 70.0 33.0 8 72.0 45.0 9 720 35.0
10 74.0 48.0 11 74.0 35.0 12 76.0 52.0
13 76.0 35.0 14 78.0 56.0 15 78.0 35.0

16 80.0 62.0 17 80.0 35.0

On the the basis of the latitude )\; and longitude ¢; for a point j, with 1 < j < 17, we
compute the unit vector u; (z;,y;, 2;). The distance from the Earth center to th point j
is set equal to

R; = \/ag cos? \; + bZsin® \; + 1.25km
where a. is the mean equatorial Earth radius which we set equal* to 6378.14 km and b, is
the polar Earth radius equal to 6356.75 km. For the masses of the 17 points are assumed

equal, the corresponding position vector rg of the point mass representing Greenland as a
whole is given by

T
rg = 17 Z R; u;j
7j=1
The corresponding geodetic polar co-ordinates of rg are
R, = 6358.71km, )\, = 72.3798", € = —43.3770°.

The elements of the Inertia tensor or equivalently the 3 x 3 matrix N, representing
the approximate contribution of the present Greenland ice to the rotational dynamics of
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the Earth, is obtained by computing

Nge =

nxy =

1

2

17 17 17

TN R, my= IR R), ne= 2SR )
=1 i=1 i=1
17 17 17
__1;7;.’131:%:71?4357 nxz:——l’;;xlzlznzx, nyz:_l—;;yl’zl:nzy
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