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DIRECT SOLUTIONS OF PARTICULAR SYSTEMS

OF

THREE QUADRATIC EQUATIONS

Luc Fraiture†

Abstract. We present solutions for a collection of particular systems of three quadratic

equations with three unknowns which involve squares and/or bilinear terms in all unknowns

in each equation. All these particular systems allow simplifications, avoiding the analytical

resolution of a fourth degree polynomial as part of the direct elimination process. The

more important cases are the systems without linear unknowns, the systems where two

equations have no linear unknowns, the systems void of bilinear unknown combinations

but with linear unknowns and finally the systems without squares. Complementary to

the algorithms a criterion is derived which shows whether the sum of two indefinite three

dimensional matrices can be made positive definite.

1. INTRODUCTION

The properties of single algebraic quadratic expressions have extensively been stud-

ied in the nineteenth century by a large number of eminent mathematician like Hesse,

Sylvester, Jacobi and Hermite, without being exhaustive. They laid the foundation for the

further study of bilinear and quadratic expressions in linear algebra in the early twentieth

century. What we need for our purposes from this vast theoretical body is quite minute

and is introduced in the next two sections. Some practical information about positive

definiteness is added in the last section.

If we make the step from a single expression to systems of quadratic equations, the

potential for a theoretical expansion is modest. Nevertheless, the properties of the square

symmetric or Hermitian matrices directly lead to a simplification which can be exploited

if there are at least two equations in a quadratic system (of any dimension) which are void

of linear unknowns. This is addressed in the classical book of Courant and Hilbert1 as well

as by Gantmacher2, who both give an extended survey of the handling of quadratic forms.

Nevertheless, all this does not lead to an analytical solution in systems of dimension as

low as three. Analytical solutions were the challenges for the gifted mathematicians up to

the end of the nineteenth century. The applied mathematical processes implied to solve a

quadratic system in dimension three, must have been clear during Hermite’s live, but they
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were then still so cumbersome that practical need would have been the only real motivation

to report the algorithms involved for finding the solutions. As far as we know, this is still

true for the direct resolution of such a general three-dimensional quadratic system with

real coefficients. Therefore, the practitioner finds little about this specific problem, a fact

which had motivated us some forty years ago to look for algorithmic simplifications. We

only succeeded to derive such simplifications for a number of particular cases, limited to

dimension three, which in the end appear to be straight forward exercises of linear and

conventional algebra. Consequently, they are of little interest in pure mathematics, but in

practice, electronic computing changed our world so fundamentally that knowledge about

the way to obtain complete numerical solutions has gained considerable importance.

The analytical geometry of quadrics is intimately linked to the properties of three

dimensional quadratic forms. But although enormous progress has been made in the

general geometry of quadratic forms and their combination, we could not find something

which could be of general practical help in resolving system of three quadratic equations in

three unknowns3. The few very general aspects related to quadrics which we may mention

later on, can be considered to be well known.

2. TRANSFORMATIONS OF A SINGLE QUADRATIC EQUATION

In all what follows we will work with a three dimensional representation. Hence, the

vector of unknowns x contains the components (co-ordinates) x, y and z. The vector x will

be subject to different sequences of linear transformations and these transformed vectors

will be written either as u, v or w and their components will be identified by subscripts

to the lower case non-bold character corresponding to the vector representation.

Let H be a 3 × 3 real symmetrical matrix and b a vector with the components

(bx, by, bz) then a quadratic equation can be represented by

c =x′ H x + 2b′ x = h11 x2 + 2 h12 xy + 2 h13 xz

+h22 y2 + 2 h23 yz + h33 z2 + 2bx x + 2by y + 2bz z (1a)

where c is a constant and an accent, added to a vector or a matrix, denotes transposition.

In analytical geometry the Hessian of the previous equation is the following determinant

value:

Hessian = det







h11 h12 h13 bx

h12 h22 h23 by

h13 h23 h33 bz

bx by bz −c






(1b)

and by discriminant one understands det (H). We will not use these quantities which are

essential tools in the study of the geometrical properties of quadrics.

We first consider a translation or displacement of the co-ordinate origin by the vector

d such that we obtain the transformed vector u = x + d. To safeguard the information
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contained in (1) this transformation necessarily corresponds to:

c =(u− d)′ H (u − d) + 2b′ (u− d)

=u′ H u + 2(b′ − d′ H)u + d′ H d − 2b′ d (2)

which means that the representation of the quadratic and bilinear terms remains un-

changed, but from the coefficients of the linear terms 2b′ one has to subtract 2d′ H and

from the constant c one will deduct (d′ H d − 2b′ d).

Next we want to introduce a linear transformation of the unknowns. We represent

this transformation by a non-singular 3 × 3 matrix T and the new unknowns by v = T x.

Equation (1) is then equivalent to

c =(x′T ′)T ′−1 H T−1(Tx) + 2b′ T−1(Tx)

=v′(T ′−1 H T−1)v + 2b′ T−1v (3)

If T = A is a non-singular orthogonal matrix for which A′ = A−1 or equivalently A′A = I3,

where I3 is a three dimensional unit matrix, one calls A′ HA a similarity transformation

of H. The real symmetric matrices H are said to be Hermitian which means that this

type of matrices has real eigenvalues with their mutually orthogonal eigenvectors. If some

eigenvalues are not different the corresponding eigenvectors are not unique. Moreover, if

H has full rank (which means ”is not singular”) these normalized eigenvectors can be put

in the columns of A to obtain an orthogonal matrix. If this is the case, A′ H A = ∆ where

∆ is a diagonal matrix whose diagonal elements are equal to the eigenvalues of H.

Let us now assume that T in (3) is the orthogonal matrix A just mentioned so that

(3) becomes

c = v′ ∆v + 2b′ A′ v (4)

We introduce the shorthand g = Ab. Thereby the detailed algebraic transcription of (4)

is equal to:

c = e1 v2
1 + e2 v2

2 + e3 v2
3 + 2 g1 v1 + 2 g2 v2 + 2 g3 v3 (5)

where ei is the i-th real eigenvalue which is non-zero if the original matrix H is non-singular.

This equation can almost trivially be reduced to a sum of squares void of linear terms. To

this aim we consider the following relation:

ei v2
i + 2 gi vi = ei (v2

i + 2
gi

ei

vi +
(gi

ei

)2
) − g2

i

ei

= ei (vi +
gi

ei

)2 − g2
i

ei
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Thus, by substituting the translated unknown wi = vi + gi/ei in the previous equation,

we obtain

c +

3
∑

i=1

g2
i

ei

= e1 w2
1 + e2 w2

2 + e3 w2
3 (6)

Such a sum of squares can be obtained for any quadratic form (of any dimension), whether

homogeneous or not, a fact which had already been derived by Lagrange. The way it is

presented here implies the insights Hermite already had some 150 years ago. It is important

to realize that the constant on the left and the coefficients on the right are all still real

provided H and b were real at the start.

For the sake of completeness we may mention that a full rank symmetric matrix H

can be factorized into the product of a(n) (upper/lower) full rank triangular matrix S with

its transpose, or H = S′S. We did not identify any particular advantage in employing the

factorization in triangular matrices when dealing with a system of quadratic equations,

whatever the special merits of such a factorization may be when considering a single

quadratic form.

3. THREE QUADRATIC EQUATIONS IN A SYSTEM

Let us recall that we start from three quadratic equations in three unknowns with the

general shape:

Φi(Hi, bi, ci) = x′ Hi x + 2b′

i x − ci = 0 (i = 1, 2, 3) (7)

The part of these equations which ensures the quadratic nature, is the Hermitian matrix

Hi. In order to be really sure that we deal with a three dimensional quadratic system

we must require that the lowest rank of the linear combination
∑3

i=1 λi hi for whatever

non-trivial values of λ is at least equal to one. Otherwise there is a non-trivial combination

which leads to the linear equation

2 (
3

∑

i=1

λi b
′

i)x =
3

∑

i=1

ci

which allows to remove one unknown by simple substitution without affecting the quadratic

nature of the resulting two quadratic equations in two unknowns.

Assuming that we have a true quadratic system in three unknowns, it is, if feasible,

permitted to arrange the system so that H1 has full rank. We make use of this fact to find

and apply the linear orthogonal transformation matrix A diagonalizing H1 by means of a

similarity transformation and apply it to the other two equations to maintain consistency.

Also the translation required to obtain the sum of squares without linear terms for the first

equation of the system as shown in (5), is applied to the other two equations as well. It is
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assumed that by these transformations the new unknowns w are equal to Ax + d, where

d is the translation required to reduce the first equation to a sum of squares, yielding the

transformed equation system represented by:

Φ1(∆(e1, e2, e3), 0, c1) = e1 w2
1 + e2 w2

2 + e3 w2
3 − c1 = 0 (8a)

Φ2(F
(2), g(2), c2) = w′ F (2) w + g(2)′ w − c2 = 0 (8b)

Φ3(F
(3), g(3), c3) = w′ F (3) w + g(3)′ w − c3 = 0 (8c)

In general (8a) is further transformed by a rescaling

yi =
√

|ei|wi (9)

If H1 is indefinite the signs of its three eigenvalues are different and (8a) will, even after

rescaling, represent an one or two bladed hyperboloid with its main axis centered at the

origin. If on the other hand H1 is positive definite, the rescaling will change the figure into

a sphere (apart from c1). The sphere is insensitive to a rotation, while hyperboloids are

modified in their description as a consequence of a rotation. If we wish to manipulate the

other two equations by means of rotations and leave the first unchanged we thus have to

require that H1 is positive definite at the start, which unfortunately is not always feasible.

We will address this problem in the last section of this note.

The pattern of positive and negative eigenvalues of a particular Hermitian matrix

cannot be modified by submitting it to a similarity transformation (due to the well known

inertia of single quadratic forms). A potentially imaginary rescaling yi =
√

ei wi which

one could apply if ei < 0 for at least one value of 1 ≤ i ≤ 3 will thus not help. Furthermore,

this brings us into the realm of Hermitian vector spaces applicable to the field of complex

numbers with sesquilinear inner products. Our algorithms can be adapted to cope with

such a situation, but one has to take care that the symmetric matrices remain self adjoint,

see for instance Wilf4, who gives a rather succinct but clear insight into the properties of

Hermitian matrices and related problems. In this note we only consider real transforma-

tions and to make the inverse transformations after having derived the numerous solutions

for the last (transformed) unknown – most of which are likely to be complex – one will just

employ the inverse of the real transformations which led to the (higher degree) polynomial

of the surviving unknown after elimination.

4. CASES WITH ANALYTICAL SOLUTIONS

CASE I

The well known system

0 = Φ1(∆(e11, e12, e13), 0, c1) (10a)

0 = Φ2(∆(e21, e22, e23), 0, c2) (10b)

0 = Φ3(∆(e31, e32, e33), 0, c3) (10c)
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is equivalent to a linear system with the unknowns w2
1 , w

2
2 and w2

3 for which we ob-

tain the unique solution ŵ2
1 , ŵ

2
2 and ŵ2

3 which gives rise to the eight solution-vectors

| ±
√

ŵ2
1 , ±

√

ŵ2
2, ±

√

ŵ2
3 | provided the 3×3 matrix E with the elements eij is non-singular.

CASE II A and B

There are quadratic equation systems where a simple inspection learns us that one unknown

can be eliminated without leaving any radical. In dimension three we fall immediately back

in a two dimensional system which has an analytical solution. We provide two examples.

Case A. In the exceptional case where Φ1 can be reduced to an equation of the shape

a w2
i + b w2

j = 0 with i 6= j and 1 ≤ i, j ≤ 3 and the arbitrary non-zero constants a and

b, we can for instance eliminate the co-ordinate wi without the intervention of a radical in

the two other equations. The latter two correspond to a system of two quadratic equations

in two unknowns which can readily be solved and yield four solution vectors. If there are

linear terms of wi in this new reduced system there is duplication of the applicable system

due to sign ambiguity of wj . This then leads to eight solution-vectors.

Case B. If one unknown of the quadratic system only appears in a single shape either

as square or in a particular bilinear term (by convention we have excluded systems with

an unknown which only linearly appears in each equation) a linear combination of the

equations can be performed such that this term disappears in two equations of the system.

These two equations represent a two dimensional quadratic equation system with four

analytic solution vectors. We stay with four solution vectors if the third unknown appeared

in a bilinear combination, otherwise we get eight solution vectors altogether.

CASE III

Next we consider the quite important and common system which is void of linear unknowns

and where ci 6= 0 for at least one value of i. We thus start from three equations with the

shape:

Φi (Hi, 0, ci) = 0 (11)

implicitly with the unknown vector w. For this case it is mandatory to ensure that H1 is

a positive definite matrix, if necessary (and feasible) obtained by means of linear combi-

nations of the equations which simultaneously have to take care that, for instance, c1 and

c2 are equal to zero. We further apply the necessary orthogonal transformation to all Hi

in order to diagonalize H1. The system is thereby modified into:

0 = Φ1(∆(e1, e2, e3), 0, 0) (12a)

0 = Φ2(F
(2), 0, 0) (12b)

0 = Φ3(F
(3), 0, c3) (12c)

where 0 < ei for all i. To diagonalize Φ2 we have to introduce a rescaling, such that (12a)

simply becomes

0 = Φ1(∆(1, 1, 1), 0, 0) = u2
1 + u2

2 + u2
3 (13)
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This is achieved by setting ui = wi

√
ei. Thereby (13) becomes insensitive for a similarity

transformation necessarily involving an orthogonal matrix. Let A2 be the orthogonal

matrix which is required in order to diagonalize (12b) by the transformation v = A2u.

Applying this also to (12c) yields a modified system which we can present as follows:

v2
1 + v2

2 = − v2
3 (14a)

ℓ1 v2
1 + ℓ2 v2

2 = − v2
3 (14b)

v′ Ĥ v = − c3 (14c)

From (14a) and (14b) we derive that v2
1 = m1 v2

3 and v2
2 = m2 v2

3 , where m1 and m2 are

known scalars. Substituting this in (14c) yields

Λ v2
3 = − c3 (15)

with four values for Λ resulting from

Λ = | ± √
m1, ±

√
m2, 1 | Ĥ

∣

∣

∣

∣

∣

∣

±√
m1

±√
m2

1

∣

∣

∣

∣

∣

∣

(16)

corresponding altogether to eight solution vectors |v1, v2, v3|′. These vectors still have to

undergo the inverse transformations to bring them in agreement with the original quadratic

equations we had to solve at the start.

CASE IV

Looking back at (12) and (15), it is obvious that also the system

0 = Φ1(∆(e1, e2, e3), 0, 0) (17a)

0 = Φ2(F
(2), 0, 0) (17b)

0 = Φ3(F
(3), b, c3) (17c)

leads to an analytical solution. It means that we start from two equations where both the

linear terms and the constants are zero. This must be so, because (17c) cannot be used

to cancel the constants in the two previous equations contrary to what happened in case

III. The equation (15) has now to be replaced by

Λ v2
3 + 2(±b′1

√
m1 + ±b′2

√
m2 + b′3) v3 + c3 = 0 (18)

which also yields eight solution vectors. The accents are used to indicate that b′i is the i-th

component of b after the application of the linear transformations necessary to achieve the

diagonalization of (17b).
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5. SIMPLER NUMERICAL SOLUTIONS

By ’simpler’ we mean those special cases which allow the elimination of two unknowns

without the intervention of the analytical solution of a quartic, which may be required in

the general case, in order to eliminate the second unknown. At any rate, the last step

will be the numerical resolution of a higher degree polynomial of the unknown left after

elimination.

CASE V

In case III we had a system without linear unknowns in all three equations. In this case we

now allow such linear unknowns in one of the three equations, say for i = 3. Proceeding

as in case III we readily obtain:

v2
1 + v2

2 = − ĉ1 − v2
3 (19a)

ℓ1 v2
1 + ℓ2 v2

2 = − ĉ2 − ℓ3 v2
3 (19b)

v′ Ĥ v + b3 v = − ĉ3 (19c)

where the carets indicate a major formal difference with case III. From the first two equa-

tions we obtain v1 and v2 as two radicals which are a function of v3 and which we can

write as follows:

v1 = ±
√

R1 = ±
√

a1 + b1 v2
3 , v2 = ±

√

R2 = ±
√

a2 + b2 v2
3 (20)

Substituting these radicals in (19c) yields an equation of the form:

P0 + P1

√

R1 + P2

√

R2 + P3

√

R1

√

R2 = 0 (21)

where P0, P1, P2 and P3 are known functions of v3, and where the former is quadratic, P1

and P2 are linear and P4 is a constant. The transformation of this expression to a rational

function of v3 yields an eighth degree polynomial. For every root of this polynomial one

finds four acceptable combinations for the values of v1 and v2. This results into 32 solution

vectors which have to be transformed back into the reference system of the original problem.

CASE VI

In this case we consider systems of three quadratic equations without bilinear combinations

of the unknowns. By an adequate translation of the co-ordinate origin the linear terms of

the first equation can be eliminated, and thus we are left with:

0 = Φ1(∆(e11, e12, e13), 0, c1) (22a)

0 = Φ2(∆(e21, e22, e23), b2, c2) (22b)

0 = Φ3(∆(e31, e32, e33), b3, c3) (22c)
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It is our aim to obtain equations which are only a function of two unknowns. Therefore

we subtract equation (22a) multiplied by the adequate scalars once from (22b) and once

from (22c) in order to cancel the coefficients of v2
1 in (22b) and (22c). Next we subtract

the new second equation multiplied by b′31/b′32 from the the new third equation and the

latter equation becomes:

e′′32 v2
2 + e′′33 v2

3 + 2 b′′32 v2 + 2 b′′33 v3 + c′′3 = 0 (23)

where the accents denote successive modifications introduced by the subtractions. But

(23) can be considered to be a quadratic equation of the unknown v2 where the solution

is a function of v3. More specifically this means

v2 =
− b′′32 ±

√

b′′232 − e′′32 qy(v3)

e′′32
(24)

with the abbreviation

qy(v3) = e′′33 v2
3 + 2 b′′33 v3 + c′′3

The same procedure can be used to eliminate the coefficients of v2
2 and v2 to determine

the unknown v1 as a function of v3 as well. This leads to

v1 =
− b′′′31 ±

√

b′′′231 − e′′′31 qx(v3)

e′′′31

(25)

with the abbreviation

qx(v3) = e′′′33 v2
3 + 2 b′′′33 v3 + c′′′3

Substituting (24) and (25) in (22a) and removing the radicals again yields a rational eight

degree polynomial of v3 which, due to the sign ambiguities in (24) and (25), results in 32

solution vectors.

Case VII

The missing squares in a quadratic equation system is an interesting case, because the

Hermitian matrices involved will always remain indefinite independently of linear trans-

formations. We will address this property in the last section. Consequently, the solution

we propose is purely algebraic only involving a translation of the origin.

We start from a system which we can represent as follows:

D





xy
xz
yz



 + B x = c (26)
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where D and B are full rank 3×3 matrices. Multiplying (26) by D−1 reduces this equation

system to:

xy + g′

1
x = c′1 (27a)

xz + g′

2
x = c′2 (27b)

yz + g′

3 x = c′3 (27c)

Case VII A Should one of the coefficients g13, g22 or g31 be zero, then the corresponding

equation system can be resolved analytically. Let us for instance assume that g13 = 0

then (27a) can be rewritten as

x =
c′1 − g12 y

y + g11
(28a)

Substituting this in (27b & c) yields equations of the following shape after removal of the

nominator:

h′

22y
2 + 2 h′

23yz + 2 b′22y + 2 b′23z = c′′2 (28b)

y2z + f ′

22y
2 + 2 f ′

32yz + 2 b′32y + 2 b′33z = c′′3 (28c)

Solving these equations for z yields:

z = − h′

22y
2 + 2b′22y − c′′2

2h′

23y + b′23
(29)

and

z = − f ′

22y
2 + 2b′32y − c′′3

y2 + 2f ′

32y + 2b33

Equating the right hand sides of the two last equations and getting rid of the nominators

results in a fourth degree polynomial of y. There are no ambiguities which could increase

the number of the four solution vectors.

Case VII B. Should such an incidental simplification of case VII A not apply, we introduce

the co-ordinate translation defined by:

u1 = x + g12, u2 = y + g11, u3 = z + g21 (30)

which simplifies (27a) to the shape

u3 =
c′1 − g′

11g
′

12 + g′

13g
′

21 − u1 u2

g′

13

= α + β u1 u2 (31a)

while the two other equations become

u1u3 + g′

22u2 + g′

23u3 = c′′2 (31b)

u2u3 + g′

31u1 + g′

32u2 + g′

33u3 = c′′3 (31c)
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We now substitute u3 of (31a) (31a) in (31b) and this leads to an equation of the following

shape:

0 = (u2) u2
1 + 2 (a20 + a22u2) u1 + (b20 + b22 u2)

= (u2) u2
1 + 2 K(u2) u1 + L(u2)

and this yields the value of u1 as a function of u2

u1 =
−K(u2) ±

√

K2(u2) − u2 L(u2)

u2
(32)

Substituting this result for u1 back in (31a) provides with u3 as a function of u2, Sub-

stituting all this in (31c) yields a function of u2 with the single radical appearing in

(32) multiplied by a quadratic polynomial of u2. Thus, in order that (31c) can be

transformed into a rational polynomial of u2 we have to put the following expression

± (b30 + b31u2 + b32u
2
2)

√

K2(u2) − u2 L(u2) in a separate equation member and square

both members. In this way with get a six degree polynomial and thus six roots for u2. The

number six has to be multiplied by two due to the sign ambiguity in (32) when computing

the complete solutions. Thereby we get twelve solution vectors.

CASE VIII

We draw the attention to the fact that the cases VI and VII have both involved three

particular non-linear shapes in which all three unknowns were involved. We have checked

that also the other possibilities can be solved very much the same way as in the previous

cases. The cases meant are one square and two bilinear terms or two squares and one bilin-

ear combination of the unknowns. The corresponding algorithms can be derived without

problems.

6. Positive Definiteness and Sums of Matrices

In this section we recall some basics about the simplest rank deficient single symmet-

ric matrices. Further, we study the ability to obtain a positive definite matrix starting

from two full rank indefinite matrices. As before we will present this material limited to

dimension three.

If H is a positive definite matrix, then 0 < x′Hx holds for any arbitrary non-zero

vector x. Henceforth the scalar u′Hv will be represented by H(u,v). If also equality

to zero applies, we say that H is positive semidefinite. If H(x,x) is positive for some

vectors x and negative for others, we say that H is indefinite. When similar properties

hold with the opposite inequality sign the matrix is negative (semi)definite. A necessary

and sufficient condition for H to be positive definite requires that the determinant of all

minors from dimension one to three centered on the diagonal of H are positive. For the

minors of dimension one this means that all diagonal elements h11, h22, h33 are separately

11



positive. For the two-dimensional minors for instance centered around 1, 1 – that is with

column one and row one suppressed – this requires that 0 < h22h33 − h2
23 and similarly

when suppressing the row and column two or three. The minor of dimension three is simply

the determinant or 0 < det (H). This is a still tractable procedure in dimension three but

it becomes cumbersome if this has to be applied to sums of matrices, and that’s our case.

For we usually require the normalized eigenvectors ui1,ui2,ui3 and the corresponding

eigenvalues ei1, ei2, ei3 of the matrix Hi, we shall rather rely on these data which are

subject to the following well known properties:

Hi uik = eik uik (33a)

u′

ik uiℓ = δkℓ (for k, ℓ = 1, 2, 3) (33b)

where δkl is the Kronecker delta which is equal to one if k = ℓ and zero otherwise. The

eigenvalues remain the same if (33a) is subjected to a similarity transformation by means

of an orthogonal matrix A. This is obvious, because such a transformation reads

A Hi A′(Auik) = eik (Auik)

From (33) one further derives that

Hi =

3
∑

k

eik uik u′

ik (34)

This result is known to be unique as far as the uik represent an orthonormal base and

the corresponding eigenvalues are different. A breakdown similar to (34) exists for par-

ticular non-orthogonal bases, but, as far as we know, the analysis of such a breakdown

has probably not yet been studied in detail. In contrast, the synthesis aspect is trivial,

because for the non-zero m-dimensional vectors pk with 1 ≤ k ≤ n where n may be any

finite positive number, the matrix M =
∑n

k=1 pk p′

k
is a m × m real symmetric matrix

and thus Hermitian. It is this property which we employ to linearly combine two or three

three-dimensional symmetric matrices to obtain a positive definite result, as far as feasible.

It is our aim to find values of µi for which

Htot = µ1 H1 + µ2 H2 + µ3 H3 (35)

is positive definite. To avoid confusion with respect to mutual orthogonality of eigenvectors,

we propose the following notation to start with:

H1 =
∑

i

αi uik u′

ik, H2 =
∑

i

βi vik v′

ik, H3 =
∑

i

γi wik w′

ik (36)
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where the Greek characters represent eigenvalues, two of which may be zero for each matrix.

The simplest case we may encounter is then a combination of three symmetric matrices

each of rank one. This means that each matrix has only one non-zero eigenvalue and (35)

becomes

Htot = µ1 αuu′ + µ2 β vv′ + µ3 γww′ (37)

and whatever the sign of each eigenvalue may be, there will always be an infinite number

of possibilities to obtain a positive definite matrix Htot, provided the three eigenvectors

involved are a (potentially non-orthogonal) base of the three dimensional Euclidean vector

space, in other words, if we put them either in the columns or the rows of a 3× 3 matrix,

its determinant must be non-zero. Case VI was a case where the Hermitian matrices

can be considered to derive from three rank-one matrices whose eigenvectors are mutually

orthogonal. We can then always write
∣

∣

∣

∣

∣

∣

H1

H2

H3

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

µ11 µ12 µ13

. . .
µ31 . . . µ33

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

αuu′

β vv′

γww′

∣

∣

∣

∣

∣

∣

(38)

where each Hi will be full rank provided the matrix M(µij) is full rank and there is no

µij = 0 for whatever combination of 1 ≤ (i, j) ≤ 3. The inverse is subject to constraints

which we do not address here.

The most basic symmetric matrix of rank two has the shape
∣

∣

∣

∣

∣

∣

0 h12 0
h12 0 0
0 0 0

∣

∣

∣

∣

∣

∣

=
h12√

2

∣

∣

∣

∣

∣

∣

1
1
0

∣

∣

∣

∣

∣

∣

| 1 1 0 | − h12√
2

∣

∣

∣

∣

∣

∣

1
−1
0

∣

∣

∣

∣

∣

∣

| 1 −1 0 | (39)

as one derives from the characteristic equation λ(λ2 − h2
12) whose roots for λ, here namely

zero and ±h12, are the eigenvalues of the matrix. Symmetrically adding an arbitrary non-

zero value h13 to the previous matrix still yields a characteristic equation with a zero root

and the eigenvalues ±
√

h2
12 + h2

13, thus still a rank two matrix. If we now add three such

matrices where also h23 is non-zero, the characteristic equation has the shape

0 = det

∣

∣

∣

∣

∣

∣

−λ p q
p −λ r
q r −λ

∣

∣

∣

∣

∣

∣

= −λ3 + λ (p2 + q2 + r2) + 2 p q r (40)

This function of λ is a cubic parabola with two extrema. The locations of this maximum

and minimum are obtained by simple differentiation and are at λ = ±
√

(p2 + q2 + r2)/3.

Whatever the non-zero values of p, q and r are, there is thus at least one positive and

one negative root/eigenvalue. Linear combinations of three matrices of rank two each with

only a single non-zero hij can thus not become positive definite. This remains true if linear

transformations are simultaneously applied to all three matrices.
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Looking back at (35) we now start with only two full rank matrices Hi which are both

indefinite. We look for a sum of these matrices which should be positive definite. If a

matrix is negative definite it is of course not indefinite and changing the sign of the matrix

makes it positive definite, thus a no-problem. If, however, a matrix has two negative

eigenvalues. we just invert its sign and we get two positive eigenvalues. We may thus

assume that we start with two matrices Ha and Hb with only a single negative eigenvalue

each. In this particular case (35) and (36) can be replaced by

Htot = µa Ha + µb Hb (41)

and

Ha ua = − ea ua, Hb ub = − eb ub (42)

where ea and eb are the absolute values of the two negative eigenvalues of the problem.

The fact that we want to be sure that there are only two negative eigenvalues in (41)

requires that both µ-values have to be positive.

If Htot needs to be positive definite then also 0 < htot(ua,ua) and 0 < htot(ub,ub)

must hold. This immediately translates into the inequalities

µa ea < µb Hb(ua,ua)

µb eb < µa Ha(ub,ub) (43)

But ea, eb, µa and µb are all positive by assumption. Hence, both Ha(ub,ub) and Hb(ua,ua)

need to be positive. The necessary condition we found this way can thus be summarized

by

0 < Ha(ub,ub), 0 < Hb(ua,ua) (44a)

ea

Hb(ua,ua)
<

µb

µa

<
Ha(ub,ub)

eb

(44b)

We will hereafter demonstrate that these conditions are also sufficient.

Let us consider a general unit vector u which we decompose in a normalized but not

necessarily orthogonal base {ua,ub,uc = (ua ×ub)/||ua×ub||}. This implies that ua and

ub are not collinear. Collinearity would anyway preclude finding an eligible ratio µb/µa

able to make Htot positive definite in (41). We thus require that < ua,ub >= cos θ0 is

smaller than one in absolute value. The decomposition of u is then

u = αua + β ub + γ uc

The component along uc only provides a favorable or positive contribution to Htot(u,u),

but even if this contribution would be missing, Htot needs to remain positive definite

without the help of this contribution. Consequently, we will set γ = 0 and consider

u = αua + β ub, with u2 = 1 = α2 + β2 + 2 αβ cos(θ0) (45)

14



Translated in Euclidean geometry the vectors u, αua and βub fit into a triangle and conse-

quently, 1 ≤ |α|+ |β| and ’a fortiori’ 1 ≤ α2 + β2. Hence, 2 αβ cos(θ0) ≤ 0 where equality

obviously holds if ua ⊥ ub. On these grounds we work Htot(u,u) out in detail, namely:

Htot(u,u) = (αu′

a + β u′

b) (µa Ha + µb Hb) (αua + β ub) =

− (α2µaea + β2µbeb) + 2|αβ cos(θ0)| (µaea + µbeb)}
+ [β2 µaHa(ub,ub) + α2 µbHb(ua,ua)] (46)

If the inequalities of (43) are satisfied we can replace the last bracket of the right hand

side of (46) by the smaller quantity α2µaea + β2µbeb. After the resulting simplifications

(46) is modified into the inequality

+2|αβ cos(θ0)| (µaea + µbeb) < Htot(u,u)

which completes the proof of the claim that the inequalities (44) are not only necessary

but also sufficient to guarantee the positive definiteness of Htot as defined before.
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