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UNIFORMLY DISTRIBUTED RANDOM DIRECTIONS

IN BOUNDED SPHERICAL AREAS

PART I: Conventional Approaches for Attitude purposes

Luc Fraiture†

Abstract The well known link between spacecraft attitude and unit vectors in di-
mension three and four is at the origin of requirements to simulate random directions or
equivalently generate points on the S2 and S3 spheres. In this first part the attention
will be focused onto uniform distributions contained in single limited areas bounded by
small and great circles which are typically generated by the usual formulation of definite
integrals over polar co-ordinates. An example of a ’toss away method’ is worked out in the
case of a spherical triangle to show how these conventional areas can further be exploited
to obtain uniform direction distributions in arbitrary spherical figures. It will further be
shown that, in dimension four, areas useful for attitude purposes are in fact spherical
subspaces obtained by constraints which specifically apply to rotations represented by the
Rodrigues four-vector. Part II is devoted to uniform random distributions contained inside
general trigonometrical circumferences and implemented without toss away intervention
on S2, employing a novel analytical area ratio method. Moreover, a direct algorithm based
on pseudo co-ordinates and adapted to spherical rectangles is presented as well.

INTRODUCTION

Let us start by noticing that the direction of a sensing target or the orientation of the
spin axis of a spin stabilized satellite corresponds to a unit vector or equivalently a point on
the three dimensional unit sphere mathematically denoted by S2. These directions may be
constrained by system requirements, or by the presence of optical baffles, or by some other
limitations. Such constraint boundaries normally translate into closed geometrical figures
on the unit sphere. In the same way, the instantaneous three axis attitude corresponds
to a three dimensional rotation which is fully defined by the four scalar Euler-Rodrigues
parameters or by what we call the Rodrigues four-vector1. This vector happens to be a unit
vector and thereby a three axis attitude corresponds to a point on the four dimensional
sphere S3. If a roll-pitch-yaw motion is constrained within given limits – for instance a
random start point of a three-axis attitude simulation which corresponds to a random
rotation constrained in size and starting from a initial given attitude – the constraint
usually correspond to a closed subspace on the four dimensional sphere. Providing the
basic background to cover these random direction generation needs for a limited class of
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special spherical figures is the aim of this note. The corresponding algorithms are presented
here and in our Notes 10.

We have not found dedicated contributions dealing with geometrically isolated dis-
tributions on spheres. Moreover, the intuitive approximations which are employed for
random direction generation in limited areas of the three or four dimensional spheres in
the fields of measurement, estimation and control do normally not get the attention which
is required to guarantee the quality of the result. The spherical surface parts we will handle
here should be considered to be examples giving the background allowing the construction
of random direction probability distribution function(s) or pdf’s as far as feasible. In this
part we will more in particular first look at the possibilities to manipulate the integration
limits of the definite integrals involving the standard pdf’s and the corresponding expec-
tations which allow a close verification of the random direction generation efficiency. This
will first be performed for S2, a case which does not involve any interpretation difficulties.
To this we will add a toss away example involving an arbitrary spherical triangle. For S3

we will explicitly identify the properties of the particular unit vectors we are looking for,
before presenting methods comparing to those derived for S2.

HISTORICAL BACKGROUND

The numerical generation of uniform direction distributions on the complete spherical
surface of any finite dimension has been studied since the middle of the twentieth century.
If one is only interested in this global type of uniform random direction simulation one
may find some information in Watson2 as well as in Fischer3, but for dimension four the
list provided by Shuster4 is the better choice. We may nevertheless complement these
references by highlighting the origin of a few methods. It all started with the upcoming
availability of electronic computing. The first contributor we identified, was the famous
mathematician John Von Neumann5. He proposed in 1951 to simulate uniform directions
in two dimensions by first generating two uniformly distributed coordinates inside a square
and toss away those coordinates not laying inside or on the inscribed circle. He further
proposed to transform these two co-ordinates in a unit vector without using a square root.
A trick which also has its equivalent for dimension four6. When one considers a sphere
in a cube the proportion of co-ordinates to be tossed away for higher dimensions grows
rapidly and is already 47% in dimension three. Therefore this algorithm is usually avoided
in practice. Soon afterwards Mueller7 reported that by obtaining n random numbers
belonging to the same normal distribution and just normalizing this n-tuple one obtains a
unit vector which is uniformly random in dimension n. In the same year (1959) Hicks and
wheeling8 derived a method to extend a uniform random direction in dimension n − 1 to
an equally uniformly distributed n-dimensional unit vector in dimension n. Next to come
were the, in our opinion, two numerically most efficient algorithms namely the algorithm
of Sibuya9 in 1964 and the one of Tashiro10 in 1977. The former is tailored to and optimal
for uniform random distributions of even dimension, the latter applies to odd dimensions.
They should thus be applied especially in higher dimensions if a huge number of random
directions needs to be generated in the shortest possible processing time. But even if a few
hundred random directions have to be simulated at once, the method relying on the normal
distribution is by far the most comfortable being hardly prone to implementation errors.
In this paper we will only describe such global uniform random direction simulations which

2



allow a modification which is, in one way or another, useful for constructing algorithms
applicable to limited areas.

THE POLE OR REFERENCE DIRECTION

All the algorithms we will derive, are based on very particular choices of the position
of the spherical figure in which we generate uniformly distributed random points. This
original position is independent of the ultimate practical position where the direction
vectors have to be located. This means that in the majority of the applications a simple
repositioning algorithm will have to be systematically applied to each generated random
point of a given sample. At the same occasion each point will be tranformed in a unit
vector which is the actual random direction we are aiming for. The figures we consider
will all first be located so that either their center or one of their corners coincide with the
pole of a polar co-ordinate system. The figure itself in which random point have to be
simulated is called the area of applicability which we represent by S. It is assumed that
the pdf is non-zero only inside S.

In line with general practice, in dimension k we will choose the last Cartesian co-
ordinate xk to be the pole or reference direction so that polar co-ordinates on the unit
sphere S2 correspond to

x1 = cos α sin ǫ, x2 = sin α sin ǫ, x1 = cos ǫ (1)

In astronomy α is a ’right ascension’, while ǫ is generally called a ’colatitude’ from dimen-
sion three onwards. We will also employ these denominations here. For we will also look
at the unit sphere S3 in dimension k = 4 the polar co-ordinates used in that case are

x1 = cos α1 sin α2 sin ǫ, x2 = sin α1 sin α2 sin ǫ, x3 = cos α2 sin ǫ, x4 = cos ǫ (2)

When we work with unit vectors, we represent the positive polar direction by v0 and
any other arbitrary direction by ve. The angle between these vectors is thus a colatitude,
or simply ǫ, what we formally represent by the inner product:

< v0 · ve > = cos ǫ (3)

The name ’mode’ which one finds in the literature about random directions is given to the
statistical mean direction(s) of a sample of ’observed’ directions contained in an area S.
Normally the ’mode’ needs to be found or an empirical pdf has to be determined around an
observed mode, in contrast to our problem where a well defined statistical situation has to
be simulated. Therefore, the ’mode’ is not an adequate notion in the present context. The
distributions considered here will be called Limited Area Uniform Distribution (LAUD).

PDF’S FOR SPHERICAL AREAS

The two types of orthogonal co-ordinate systems, indicated when dealing with ge-
ometry on spheres, are the Cartesian co-ordinates on the one hand and the spherical
co-ordinates on the other hand. For the latter we have just before selected the polar vari-
ant which involves a colatitude ǫ. This section recalls the conventions employed for a pdf
which relies on polar co-ordinates
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If we restrict ourselves to continuous distributions a pdf p(x1, . . . , xk) is a positive,
finite and single valued increasing function integrating to one over its validity area S as
follows:

1 =

∫

S

p(x1, . . . xk) dx1, . . . dxk (4)

Thus, by convention, the pdf includes any metric factors which are dictated by the prop-
erties of the underlying manifold and the corresponding co-ordinates employed. This con-
vention allows to give the well known general definition for the mathematical expectation
of an arbitrary function f(x1, . . . xk) integrable over S, namely:

E (f) =

∫

S

f(x1, . . . xk) p(x1, . . . xk) dx1, . . . dxk

without having to care about the potential underlying geometry.
For our particular case a little introduction is given in Note 4, explaining the well

known method to derive the infinitesimal surface elements for a k-dimensional sphere. If
more background is desired, we refer to the very readable chapters VII and VIII of the
classical book by A.P. Wills [11]. For S2 and S3 these elements are:

dS2 = sin ǫ dα dǫ, dS3 = sin α1 sin2 ǫ dα1 dα2 dǫ (5)

respectively. In our problem we have to simulate an arbitrary number of random directions
which, in the end, must have the same density per area unit everywhere in S, or in other
words: distributed uniformly in S. Because the probability to find a direction in an area
unit must the same everywhere, this corresponds to a probability model function

h(α, ǫ) =
1

∫

S
dS2

as if S2 were a plane. To arrive at the required shape prescribed by (4) including the effect
of the polar manifold we write

1 =

∫

S

h(α, ǫ) dS2 =

∫

S

sin ǫ
∫

S
dS2

dαdǫ =

∫

S

p(α, ǫ) dαdǫ (6)

Consequently the pdf’s expressed in polar co-ordinates for an area S on S2 and S3 are:

p2(α, ǫ) =
sin ǫ

∫

S
dS2

, p3(α1, α2, ǫ) =
sin α1 sin2 ǫ

∫

S
dS3

(6)

respectively. This indicates that from dimension three onwards, the probability density of
any type of uniform random distribution has to be zero at the pole (ǫ = 0). This is a well
known statistical insight also occurring with other types of distributions. It is caused by
the fact that the surface element dS itself becomes zero at ǫ = 0. Pdf’s expressed in other
parameters not relying on a spherical colatitude co-ordinate, do not show this peculiarity,
as is the case in the paper by Weinberger [12].
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The pdf’s we will work out have the main purpose to allow the correct simulation
of random directions having the properties inherent to the pdf they are derived from.
To this end we will, in a number of cases, have to perform probability transformations
from a uniformly distributed real number in a given line interval to a random spherical
co-ordinate which is also uniformly distributed on the sphere. This is achieved by the well
known relation between the cumulative distribution function Fx(η) corresponding to the
pdf p(x) – integrated up to the new transformed random variable η – with the random
variable ξ distributed uniformly between zero and one, or

ξ = Fx(η) =

∫ η

−∞

p(x) dx (7)

The integration involved normally leads to a non-linear function of the unknown η, while
ξ is the input to (7). If an explicit analytical expression for η cannot be obtained on the
basis of (7), we will systematically apply the method of the chord to solve the non-linear
function for η as a function of ξ. This is feasible because the right hand side of (7) is an
increasing function of η. The transformation (7) works for one variable only. The straight
forward application of (7) is thus only possible if the pdf for a random direction can be
factorized as follows:

p(α1, . . . , αk−2, ǫ) = pǫ

k−2
∏

i=1

pi(αi)

which is the case in this Note. This factorization is no longer possible in area ratio methods
presented in Note 10. In that case the difficulty will be overcome by a step by step factitious
integration allowing each time the application of (7). In fact the integration result will be
obtained indirectly by means of analytical area expressions.

UNIFORM DISTRIBUTIONS ON S2

Global Uniform Distributions

All known algorithms to simulate uniformly distributed random directions on the
complete S2 sphere, which only rely on the generation of uniformly distributed scalars,
permit a particularization to spherical caps, rings and parts of them, except the ball
in the box case. We therefore look to the former as an introduction to LAUDs on the
sphere in three dimensions. To easily include the intervention of uniformly distributed
random numbers we introduce the convention that, for the generation process of a uniformly
distributed random number ξ inside a prescribed interval (a, b) on a line, we will write

ξi = ρ(i)
u a ≤ ξ ≤ b (8)

where ρu is the process itself and i stands for the i-th random number involved if more
than one different statistically independent random number is required for the simulation
of a single random direction.

We know that the surface of a three dimensional unit sphere is equal to 4π. Hence,
we can divide the corresponding surface integral by 4π or:

1 =
1

4π

∫ π

ǫ=0

∫ 2π

0

sin ǫ dǫ dα (9)

5



which directly compares to (6). From this integral we derive that the pdf of the global
uniform distribution expressed in polar co-ordinates, is simply:

p(α, ǫ) = pαpǫ =
( 1

2π

) ( sin ǫ

2

)

(10)

Consequently, obtaining a random angle α is equivalent to generating a uniformly dis-
tributed random number in an interval of length 2π. The variables ǫ is distributed like a
sine function requiring the intervention of (7) yielding:

η = arccos (1 − 2 ξ) (11)

The (a) pdf based algorithm for generating pseudo random directions on S2 as a whole
proceeds as follows:

a1. ξ1 = ρ
(1)
u with 0 ≤ ξ ≤ 1

a2. get ǫ = η by applying (11)

a3. α = ξ2 = ρ
(2)
u with −π ≤ ξ < π

a4. x1 = cos α sin ǫ, x2 = sinα sin ǫ, x3 = cos ǫ
The character (a) just used is employed to denote the particular algorithm which is redun-
dantly referred to by a name, here ’pdf’.

The pdf based algorithm just described and the algorithm of Hicks and Wheeling[8]
limited to dimension three are almost equivalent. To describe the central idea of their

procedure in our notations, we start from pǫ in (10) and write n0k =
∫ π/2

0
sink−2 ǫ dǫ for

the normalization constant limited to ǫ in an hemisphere of dimension k. Substituting sin ǫ
by s and employing the fact that dǫ = cos−1 ǫ d(sin ǫ) leads to

2 ξ =
1

n0

∫ η

0

sk−2 ds

+
√

1 − s2
(12)

With n0 = 1/2 for k = 3 this is a partial alternative for (11), because we still have to add a
random sign to the random value of s. By comparing this with Tashiro’s algorithm[10], in
the special case of dimension three, we see that also that is the same, because the integral
in (12) can be transformed as follows:

ξ =

∫ η

0

s ds√
1 − s2

=
√

1 − η2 =
√

1 − sin2 ǫ = cos ǫ

Thus, ξ between zero and one simply maps onto cos ǫ with ǫ between zero and π/2. To cover
the two hemispheres the known minute adaptation in the following (b) Tashiro procedure
is proposed:

b1 cos ǫ = ξ1 = ρ
(1)
u with −1 ≤ ξ ≤ +1

b2 α = ξ2 = ρ
(2)
u with −π ≤ ξ ≤ +π

b3 x1 =
√

1 − cos2 ǫ cos α, x2 =
√

1 − cos2 ǫ sin α, x3 = cos ǫ
which, indeed, is numerically the shortest approach.
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Spherical Caps and Derived LAUDs

The integration limits of (9) can be selected so as to define an area of S2 comprised
between the colatitude angles ǫa and ǫb and the right ascensions αa and αb as follows:

1 =
1

nr

∫ ǫb

ǫa

∫ αb

αa

sin ǫ dǫ dα (13)

with
nr = (αb − αa)(cos ǫa − cos ǫb) (14)

subject to the constraints 0 ≤ ǫa < ǫb ≤ π and −π ≤ αa < αb ≤ π. The break down of the
relevant pdf is now:

pr(α, ǫ) =
( 1

αb − αa

)( sin ǫ

cos ǫa − cos ǫb

)

(15)

We thereby obtain the numerically optimal and statistically rigorous (c) Extended Tashiro
procedure which simulates independent random directions in restricted areas by only set-
ting particular integration limits for the polar co-ordinates in (12), namely:

c1 cos ǫ = ξ1 = ρ
(1)
u with cos ǫb ≤ ξ ≤ cos ǫa

c2 α = ξ2 = ρ
(2)
u with αa ≤ ξ ≤ αb

c3 x1 =
√

1 − cos2 ǫ cos α, x2 =
√

1 − cos2 ǫ sin α, x3 = cos ǫ
With the help of this procedure we can simulate uniform direction distributions inside:
- spherical caps with ǫa = 0 but ǫb < π while α2 − α1 = 2π,
- spherical rings with 0 < ǫa, ǫb < π and α2 − α1 = 2π,
- (complete) lunes with ǫa = 0 and ǫb = π while α2 − α1 < 2π,
- lune triangles where either ǫa 6= 0 and ǫb = π, or ǫa = 0 and ǫb 6= π while α2 − α1 < 2π
(this is a triangle which is not subject to the rules applicable to the spherical triangles
dealt with in spherical trigonometry due to the presence of one side which is a small circle
arc),
- spherical co-ordinate quadrangles which are a mixture of the preceeding boundary def-
initions. Their main geometric properties require that there are two parallel small circle
arcs intersecting two meridians going through the polar axis perpendicular onto the plane
of the small circles.
The reference system in which we have generated the random points on the sphere, is
usually not the same as the reference system in which the simulated points are ultimately
employed. A simple method to perform the required transformation, is described later on
at the end of the spherical triangle example. The method is based on the selection of three
non-coplanar fixed points preferably located on the circumference of the application area
and available as known vectors in the target reference system.

Checking Randomness on Spherical Caps and Derived LAUDs

As announced before the performance verification of a large random direction sample
generation for any of the LAUDs introduced before can be achieved by comparing the
theoretical expectations of the mean values and mean squares of the α-co-ordinate or right
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ascension as well as for the ǫ-co-ordinate or colatitude. This even applies to quadrangles
or rings located far from the pole.

The break down of the pdf implied by (15) yields the following mathematical expec-
tations for the right ascension:

E (α) = 0.5 (αa + αb), E (α2) = (α2
a + αa αb + α2

b)/
√

3 (16)

if the figure considered has no rotational symmetry around the pole. This does not play a
role for the colatitude for which we find:

E (ǫ) = MN3(ǫb) − MN(ǫa), E (ǫ2) = MSQ3(ǫb) − MSQ(ǫa) (17)

with the functions

MN3(ǫ) =

∫ ǫ

0

ǫ pǫ(ǫ) dǫ = (sin ǫ − ǫ cos ǫ)/(cos ǫa − cos ǫb)

and

MSQ3(ǫ) =

∫ ǫ

0

ǫ2 pǫ(ǫ) dǫ = (2ǫ sin ǫ − (ǫ2 − 2) cos ǫ − 2)/(cos ǫa − cos ǫb)

where the subscript three refers to the dimension we are working in. We suggest to build
the empirical mean and root mean square (RMSQ) values in parallel with the RMSQ
value of ǫ derived from the empirical covariance matrix C involving only the x1 and x2

co-ordinates, namely:

C =
1

N

∣

∣

∣

∣

Σ x2
1 Σ x1 x2

Σ x1 x2 Σ x2
2

∣

∣

∣

∣

(18)

where N is the number of directions in the sample. In cases of rotational symmetry (RS)
the diagonal elements cii of C must theoretically be mutually equal. Even without RS the
RMSQ of the colatitude is equal to

ǫcov = arcsin[(c11 + c22)
1/2] rad (19)

as derived in Note 4.
Empirically testing all these parameters makes another counting process superfluous,

because if something is mistaken in the coding of the algorithm it will appear by verifying
mean and RMSQ on both co-ordinates.

TOSS AWAY

By ’toss away’ we mean algorithmic steps which have to be undertaken to get the
right uniform distribution of random directions by first generating such directions in a
larger area subject to a rejection criterion which allows to fill a precisely defined smaller
area. Although there may be cases where the intervention of toss away can hardly be
avoided, there are also a number of instances where employing toss away is not mandatory
but could replace an intricate or equally less effective algorithm. To help us making a
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choice, we introduce a numerical efficiency measure consisting of two factors, namely the
geometrical efficiency eg and the numerical efficiency en. Quantifying this efficiency is
then based on the the number of ’random number’ generations required in the mean for
obtaining one valid random direction satisfying all potential constraints. The efficiency
shall be equal to one if we need the minimum quantity of uniformly distributed random
numbers per independent random direction generation, that is equal to 2 on S2 meaning
on the sphere in dimension k = 3 and to 3 if k = 4. If more is required the efficiency shall
decrease proportionally.

The geometrical efficiency is simply the ratio of the actual useful area SU where
directions are retained over the full area SF in which the bulk of the algorithm is performed
before the rejection criterion is applied, or eg = SU/SF . If m uniformly distributed
random numbers are required in excess of k−1 for the generation of one random direction,
the corresponding numerical efficiency is obviously equal to en = (k−1)/(m+k−1) and
the total proposed efficiency measure becomes

etot =
SU (k − 1)

SF (m + k − 1)

Uniform Distribution in a Spherical Triangle

This is an example where polar co-ordinates can be employed in combination with a
toss away scheme. In contrast to the previous cases, where the derivation of the pdf was
the major concern, here the geometrical aspects will play an overriding role. Let us start
with three arbitrary defined unit vectors t1, t2 and t3 pointing to the corners of a spherical
triangle. We assume that none of the arcs separating any two of the three directions is
larger that π. It will be our strategy to move away from the three dimensional vector
description towards the two dimensional manifold S2 where spherical trigonometry evolves
independently of the actual Cartesian orientation of the triangle. The unit vectors are only
needed to compute the essential angles and arc lengths belonging to the triangle shown in
Fig.1. The three arcs between the points ai and aj are represented by ǫij and the dihedral
angles βi at the corners of the triangle are found from:

cos ǫjk = (tj · tk) and cos ǫjk = cos ǫij cos ǫik + sin ǫij sin ǫik cos βi (20)

where i, j, k are a permutation of 1,2,3.
We further forget about t1, t2 and t3 for a while and locate the triangle in a favorable

orientation in the polar co-ordinate system, namely with one corner coincident with the
pole. Consequently, two of the sides of the triangle are then located on meridians and
the spherical triangle is thus completely embedded in a lune triangle. Thereafter, we
generate uniformly distributed direction in this lune triangle by assuming that the meridian
comprising the point a2 corresponds to a right ascension α = 0 and the integration over
the right ascension goes up to α = β1, whereas the colatitude needs to integrated between
zero and ζ = sup(ǫ12, ǫ13). After having obtained the random point D with right ascension
αd and colatitude τ1, one has to check whether this point is inside the triangle and if not,
toss it away. In this case one repeats the procedure until a valid D is obtained. The actual
geometrical check consists in verifying that the dihedral angle ω satisfies the inequality
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0 ≤ ω ≤ β2 provided ǫ13 ≤ ǫ12 as depicted in Fig. 1. The dihedral angle ω is obtained by
means of two applications of the cosine rule using the angles given in Fig.1, namely:

cos τ2 = cos ǫ12 cos τ1 + sin ǫ12 sin τ1 cos αd (21)

yielding τ2, which was still unknown and employing it now in

cos τ1 = cos ǫ12 cos τ2 + sin ǫ12 sin τ2 cos ω

provides ω. Should ǫ12 ≤ ǫ13 apply instead, we have to derive an ω between ǫ13 and τ3

and compare it with β3. To be effective we will have to take care to locate the original
triangle at the pole in way to obtain the smallest ratio of the useless area – there where
toss away occurs – with respect to the area of the spherical triangle inside the lune.

t
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and the location of a random point D
Fig. 1 Geometrical specification of the spherical triangle
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Once a valid point D has been obtained, it still needs to be converted into a unit
vector td consistent with the Cartesian orientation of the triad t1, t2, t3. On top of cos τ1

and cos τ2 we need the value of cos τ3 which is easily obtained by means of the cosine
rule. Thereby we have the three direction cosines of td in the skew reference system whose
reference axes are along the unit vectors t1, t2, t3. Consequently, we can write

td = m1 t1 + m2 t2 + m3 t3

with the reference co-ordinates m1, m2, m3 which one determines by solving the following
basic linear equation system:

∣

∣

∣

∣

∣

∣

(t1 · td)
(t2 · td)
(t3 · td)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

cos τ1

cos τ2

cos τ3

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 cos ǫ12 cos ǫ13
cos ǫ12 1 cos ǫ23
cos ǫ13 cos ǫ23 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m1

m2

m3

∣

∣

∣

∣

∣

∣

(22)

The matrix involved is known to be positive definite, because the corresponding Gramm
determinant is non-zero if the triad is not coplanar. Further, this matrix is always the same
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for all random directions inside the same spherical triangle enclosed by the triad t1, t2, t3.
Hence, the burden involved to perform the transformation from spherical trigonometry
back to a three dimensional vector space is almost negligible. This is one of those examples
which show the power behind the synergy of spherical trigonometry and vector calculus.

In Note 10 a numerical example is given for the random direction generation inside a
given spherical triangle. In that context the present toss away scheme is compared with a
novel analytical area ratio method proposed there for the triangle as well. At that occasion
the actual efficiencies of both algorithms are assessed

UNIFORM DISTRIBUTION ON S3

The Global Uniform Distribution

The global distribution which involves the complete surface of S3 is in fact a special
case of a LAUD consisting of a spherical cap around the pole. Hence, it may be advanta-
geous to start with the surface integral for a cap of arc radius ǫ0 yielding the surface which
contains the normalization constant nǫ0, namely:

∫ ǫ0

0

∫ π

α1=0

∫ 2π

α2=0

sin α1 sin2 ǫ dǫ dα1 dα2 = 4π (0.5ǫ0 − 0.25 sin(2ǫ0)) = 4π nǫ0 (23)

For the full sphere ǫ0 = π and its surface becomes 2π2. Consequently, the pdf of the cap
on S3 can be factorized as follows:

pu3,ǫ0(ǫ, α1, α2) = pǫ0(ǫ) pα1
(α1) pα2

with

pǫ0(ǫ) =
sin2 ǫ

(0.5ǫ0 − 0.25 sin(2ǫ0))
, pα1

(α1) =
sin α1

2
, pα2

=
1

2π
(24)

Obviously the generation of random values of α1 and α2 follows the lines of the (e)-pdf
algorithm in the section about Lauds on S2. This time the random number transformation
for ǫ is subject to the equation:

ξ =
1

nǫ0

∫ η

0

sin2 η dη =
(0.5η − 0.25 sin(2η))

(0.5ǫ0 − 0.25 sin(2ǫ0))
(25)

where, as usual, ξ is a random number between zero and one and η is the tranformed
random ǫ angle satisfying the correct pdf in the range between zero and ǫ0. This leads to
the following pdf-based direction generation algorithm:

d1. ξ1 = ρ
(1)
u with 0 ≤ ξ ≤ 1

d2. get α1 = η by applying (11)

d3. α2 = ξ2 = ρ
(2)
u with 0 ≤ ξ < 2π

d4. ξ3 = ρ
(3)
u with 0 ≤ ξ ≤ 1

d5. compute ǫ = η by solving (25) employing ξ3

d6. x1 = cos α1 cos α2 sin(2ǫ), x2 = cos α1 sin α2 sin(2ǫ), x3 = sin α1 sin(2ǫ), x4 = cos(2ǫ)

We further have the Shibuya18-algorithm with the following implementation scheme:

11



e1. as for d1
e2. cos η =

√
ξ1, sin η = +

√
1 − ξ1

e3. β1 = ξ2 = ρ
(2)
u with 0 ≤ ξ ≤ 2π

e4. x1 = cos η cos β1, x2 = cos η sin β1

e5. β2 = ξ3 = ρ
(3)
u with 0 ≤ ξ ≤ 2π

e6. x3 = sin η cos β2, x4 = sin η sin β2

This straight forward method relies on non-polar spherical co-ordinates. This alternative
only works for even dimensions. In our opinion, the (normal) algorithm using the nor-
mal distribution on each Cartesian co-ordinate, as explained in the introduction is also
the simplest to implement among the algorithms presented here and by Shuster[4]. We
extensively tested the methods d, e and the normal distribution approach and verified the
mean direction densities on spherical caps with 150 arc radius located on the co-ordinate
axes (8 caps), on directions equidistant from all co-ordinate axes (16 caps), on directions
equidistant from any two axes and orthogonal to the other two (24 caps) and finally on the
rest of the sphere separately. All three methods work equally well. Even by reducing the
arc radius of the spherical caps no clustering around the natural symmetry axes related to
co-ordinates could be identified. Nevertheless, only the pdf based method ’d’ is adequate
when considering LAUDs on S3.

The Target Directions on S3

The four dimensional directions we are interested in here, are the Rodrigues four
(unit) vectors, whose components were first derived by Euler13 as an effective analytical
and rational parameterization of a three dimensional orthogonal transformation of norm
plus one. Such a transformation is now known as a rotation matrix which is an element of
the SO(3) group. The parameterization of the 3×3 rotation matrix Q by the real numbers
(q1, q2, q3, q4) is in fact

Q =

∣

∣

∣

∣

∣

∣

q2
1 − q2

2 − q2
3 + q2

4 2(q1q2 + q3q4) 2(q1q3 − q2q4)
2(q1q2 − q3q4) −q2

1 + q2
2 − q2

3 + q2
4 2(q2q3 + q1q4)

2(q1q3 + q2q4) 2(q2q3 − q1q4) −q2
1 − q2

2 + q2
3 + q2

4

∣

∣

∣

∣

∣

∣

It was Rodrigues14 who discovered, independently from Euler, the particular geometrical
properties of these numbers and the ability to combine arbitrary rotations with their
help. Let us represent the real eigenvector or rotation axis belonging to Q by the three
dimensional unit vector p and the rotation angle around this vector by γ, then the four
’Euler-Rodrigues parameters’ contain p and γ in the following way:

q1 = px sin γ/2, q2 = py sin γ/2, q3 = pz sin γ/2, q4 = cos γ/2 (26)

If p is expressed in right ascension α and colatitude θ and we write ǫ = γ/2, it appears
that (26) represents a point on S3 in polar co-ordinates, the way we have defined it before.
The vector representation r of (26) is then the Rodrigues four-vector. From (24) we know
that the pdf’s of α, θ and ǫ are separable. Consequently, we can express constraints on any
of these parameters separately or combine them with the knowledge that ǫ stands alone as
rotation angle, while α and θ can be constrained so as to force the simulated rotation axes
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to stay within given three dimensional boundaries. These combinations are the LAUDs
we address in the rest of this note.

To highlight the basic properties of r with respect to three dimensional rotations, we
introduce the four-vector p0, namely p0 = |p : 0|′, where the accent denotes transposition,
and v0 = |0, 0, 0, 1|′. The Rodrigues four-vector can then be written as

r(p,ǫ) = sin ǫp0 + cos ǫv0 (27)

We notice that
Q(+r) = Q(−r) (28)

due to the quadratic dependence of Q with respect to the Euler-Rodrigues parameters in
the matrix displayed in (26). By inspecting (27) we further observe that

r(p,ǫ) = r(−p, − ǫ) (29)

independently of (28). These ambiguities are not disturbing in the majority of the appli-
cations involving Rodrigues four-vectors. And also here it does not really matter, if one
takes care to enforce the natural constraint 0 ≤ ǫ ≤ π valid for any colatitude.

Before proceeding to the general simulation cases in dimension four, it may be useful
to cast a glance on such constraints which decrease the stochastic dimensionality, thus
requiring simpler random direction generation algorithms.

In a first case we might like to simulate random rotations which have a constrained
or not constrained random rotation angle 2ǫ combined with a constant rotation axis p.
From (27) it is immediately obvious that this is a one dimensional case equivalent to the
random number generation of a point on a circle or an arc of it, that is on S1. And because
the surface element is one in this case, it will be sufficient to directly generate uniformly
random numbers for the values of ǫ in the desired interval.

In a second case we may suppress a dimension by keeping ǫ constant but vary the
rotation axis p over the complete sphere S2 or part of it, thus a simulation in dimension
three where r is complemented in a non-stochastic way as prescribed by (27). Equivalently,
one may constrain the area, in which the rotation axis may evolve, to a plane. Let us,
for example, do the random direction generation so that the fixed plane in which pe

must be perpendicular to the r2-axis, then pe = | cosα, 0, sin α|′. Further, both α and
ǫ are simultaneously and independently random so as to yield a direction on S3 where
the y−co-ordinate has always to be zero. This is equivalent to a direction on S2 with the
components | cos α sin ǫ, sin α sin ǫ, cos ǫ|′ to be distributed globally over S2; a problem
discussed earlier. Assume now that we do not really aim at the x, y−plane, but at a plane
moved away by a fixed rotation Qt, then the actual Rodrigues-four vector is reached by
applying systematically Qt to pe, or:

r = r(p,ǫ) = sin ǫ

∣

∣

∣

∣

∣

∣

Qt pe

· · ·
0

∣

∣

∣

∣

∣

∣

+ cos ǫv0

It is important to be aware that the generation of the rotation axis, hidden in r, can be
performed in the context of a geometrically simple configuration before moving it sys-
tematically to the target orientation by applying the repositioning as explained before.
In agreement with (27), we therefore need a reference triad consisting of three vectors
p1,p2,p3 in the circumference limiting the location of the random vector p obtained..
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LAUDs on S3

Starting from (20) we can obtain all possible LAUD defined in polar co-ordinates, by
assuming integration boundaries subjected to the constraints 0 ≤ ǫ1 ≤ ǫ ≤ ǫ2,≤ π, 0 ≤
θ1 ≤ θ ≤ θ2 ≤ π and α1 ≤ α ≤ α2 which yield the normalization value:

n(laud) =

∫ ǫ2

ǫ1

∫ θ2

θ1

∫ α2

α1

sin θ sin2 ǫ dǫ dθ dα (30)

with the decomposition

n(laud) = [nǫ(ǫ2) − nǫ(ǫ1)] [nθ(θ2) − nθ(θ1)] [nα(α2) − nα(α1)]

where only the factor concerning ǫ adds something new to what we had derived in (16)
and (17) for S2 where – for the application to this case – ǫ in(17) has to be replaced by θ.
From (20) we get

nǫ(ǫ0) = 0.5 ǫ0 − 0.25 sin(2ǫ0) (31)

The corresponding pdf’s remain very simple. They are

pǫ =
sin2 ǫ

nǫ(ǫ2) − nǫ(ǫ1)
, pθ =

sin θ

cos θ1 − cos θ2
, pα =

1

α2 − α1
(32)

Introducing the shorthands MNE4 and MSQE4 for the following functions, namely

MNE4(ǫ0) =
1

nǫ(ǫ2) − nǫ(ǫ1)

∫ ǫ0

0

ǫ pǫ(ǫ) dǫ

=
0.25ǫ20 − 0.25ǫ0 sin 2ǫ0 − 0.125(cos 2ǫ0 − 1)

nǫ(ǫ2) − nǫ(ǫ1)
(33)

and

MSQE4(ǫ0) =
1

nǫ(ǫ2) − nǫ(ǫ1)

∫ ǫ0

0

ǫ2 pǫ(ǫ) dǫ

=
ǫ30/6 − 0.25(ǫ20 − 0.5) sin 2ǫ0 − 0.25ǫ0 cos 2ǫ0

nǫ(ǫ2) − nǫ(ǫ1)
(34)

yields the expectations:

E (ǫ) = MNE4(θ2) − MNE4(ǫ1) and E (ǫ2) = MSQE4(ǫ2) − MSQE4(ǫ1)

for a uniform distribution in the interval (ǫ1, ǫ2)
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