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ANGULAR MOMENTA OF THE SOLAR SYSTEM

A. INVARIABILITY OF THE GLOBAL SYSTEM

Luc Fraiture†

1. INTRODUCTION

When considering the Angular Momentum (AMm) of the Solar SYstem (SSY) we are
used to limit this momentum to the mass point approximations of the sun and its planets.
This is supported by the fact that the orbit of a planet around the sun corresponds to a
constant AMm by Kepler’s second law. Inertially, this viewpoint neglects the fact that
the sun moves on a trajectory around the SSY’s barycenter. Although this trajectory is
usually referred to as an ’orbit’, it is certainly not a Keplerian orbit, because the barycenter
does mechanically not coincide with the location of a driving ’central force’. This neglect
corresponds to an inertial AMm which, even if modest, has an impact on the individual
bodies of the SSY. As we will show, also the sum of all inertial mass point angularmomenta
(AMa) of sun and planets is theoretically not completely constant.

Hence, there is a contradiction with the Eulerian axiom which says that a body which
is not subject to external torques or forces, has a constant AMm. We may assume that
this applies as well to rigid bodies or rigid parts rotating independently or not and kept
together by internal forces. The SSY is in fact such a system of masses subject to the
internal gravitational forces, but there is no reason why these forces should lead to a
variation of the inertial AMm of the SSY as a whole. This point of view is enforced by
the observation that there is not the slightest evidence of an interference of such a specific
AMm perturbation and celestial mechanics.

The only way out to satisfy Euler’s axiom which we could identify, resides in a reaction of
the SSY bodies counteracting the AMm variation linked to the barycentric offset. Alter-
natively, giving up Euler’s invariance principle is not an option, because it gives rise to an
other even more fundamental problem. If so, the mechanical energy of the SSY would not
be constant even if all of its constituting bodies were rigid, as we will explain later. This
note is devoted to the theoretical study of this subject and the deduction of a proposal
which can resolve the problem just presented.

In the next section we start by analytically isolating the constant and variable parts of
the AMm of the more important SSY masses taken as points. More important means
including the sun and all planets. A succinct numerical analysis is presented in section 3.

‡ First version posted on December 1, 2013. Version two with error corrections posted on 02.01.2014. Version 3

addition of sect. 3 posted on 02.01.2014.

† Private contribution; address: Lucasweg 6, D-64287 Darmstadt, Germany

1



For the isolation of the actual variation we can look at two aspects. The first is the vector
sum of the mass point inertial AMa and its change in size and orientation as a function of
time. The second aspect is the evolution of the orientation of the SSY instantaneous inertia
ellipsoid at each sampling point. Both aspects have to be considered together to make a
statement about the possibility that the SSY as a whole would be subject to something
like a constant precession.

In the fourth section we propose an analytical derived ’point mass – body coupling’ not to
mix up with the intuitive ’sun’s orbit and sun spin coupling’ proposed by Shirley J.H.(2006)
and not subscribed by the present author. To find out whether the inherent conjecture in
our theory is true or not, depends on the ability to overcome any contradiction with existing
observations and even much more, to explain observations of phenomena observed in the
SSY whose origin were unclear so far. Even without the conjecture, the theory presented
leads to weak oscillatory individual point mass AMa whose frequencies are intimately linked
to the synodic periods of all planet pair combinations. This is derived in the last section.
When accepting the conjecture also the actual extended bodies are the subject of well
defined corresponding torques (TRQs).

In the past three years the attention of the author went to the sun, but in that respect
he was not able go beyond the result stating that there were no contradictions in the
observations he had scrutinized. This is certainly not enough! More promising is the
case of the Earth for which we could, so far, heuristically derive rather accurately two
Chandler wobble (CW) frequencies mentioned in the literature and corresponding to pe-
riods of approximately 435 days due to Jupiter’s intervention and 411 days caused by
Saturn independent of any measurement interpretations. The latter experimental period
has been questioned by Kiryan D.G. and Kiryan G.V.(2012) based on the identification of
inadequate measurement evaluations presented in the literature. Whether this is sufficient
to claim the non-existence of the 411 day period is, in our opinion, still open.

At first sight, the true prove would consist in the reconstruction of the polar wobble
path and minute amplitude variation of the spin vector on the basis of the proposed
theory. Unfortunately, the accurate observation analysis of the CW reveals that there
are phase jumps and jerks, see for instance Malkin Z. and Miller N.(2010) and references
therein. These anomalies will hardly be explainable by the variable planetary N-body
TRQ which is fully continuous. Moreover, the study performed by R.S. Gross(2000) says
in its introduction: ’Evidence is presented that the CW is excited by a combination of
atmospheric and oceanic processes, with oceanic bottom pressure being the dominant
excitation mechanism’. With the N-body perturbation TRQs in the background we may
still claim that, in the first instance, the TRQs are driving or initiating polar wandering,
while atmospheric and oceanic processes constitute an interfering feedback. This may fit
together. Nevertheless, the Earth is thus a complex case. Therefore, in the end, it looks as
if the moon is probably the better test case, because it is an almost RIGID body allowing
a reasonable verification of the conjecture proposed without too many intricacies. Lack of
adequate pole wandering data of the moon may be the trouble in that case.

However, one has to notice, that it is extremely probable that the author will not have
the survival time to complete this demanding undertaking in the light of the very high
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accuracy requirements, his isolation as pensioner and the lack of adequate ready-to-use
infrastructure. He will have to leave the job to an interested person or team somewhere in
the world wishing her/him or them ’good luck’.

By the way, this IS actually the purpose of MY notes.

The reading of this note is mandatory before going to the notes 9B dealing with the Earth
(as far as it went and could reach the upload) and 9C giving our results for the sun. If
the proposed theory is acceptable it could also be an element in the explanation of the
Venusian winds, decadal meteorological events on Mars and the zonal dynamics of the
observable gas atmospheres of the Jovian planets.

2 THE GLOBAL INERTIAL ANGULAR MOMENTUM

2.1 Basics

LetMsun be the mass and rsun the position vector of the sun with respect to the barycenter.
Let Mi with ri similarly be the masses and barycentric positions of the planets with the
indices i = 1 to 8 counting from Mercury with i = 1 to Neptune with i = 8, respectively.
The position of the barycenter may be taken to be inertially fixed and the position of the
sun in this system is at all times constrained by

Msun rsun = −
8

∑

i=1

Mi ri (1)

The units in tables and plots presented in this note will rely on the astronomical unit AU
= 149.598 106 km as length unit. Except if specified otherwise, the masses are measured
in Earth masses (EM). For example: Msun = 332270.EM. For the unit of time we use the
terrestrial solar ’day’, if not explicitly replaced by ’yr’. We will call them ’plotting units’.

For completeness we remind the magnitude constraint applicable to rsun. We therefore
represent the semi-major axis of planet i by ai and eccentricity by ei. Assuming that the
four outer planets would all have their aphelia aligned and in the same direction away
from the sun, the maximum distance |rsun| from the barycenter is subject to the following
constraint:

sup |rsun| <
1

Msun

8
∑

i=5

Mi ai (1 + ei) ≈ 1.579 106 km (2)

where the value on the right hand side cannot be reached, because the apsidal lines of the
different planetary orbits are not collinear. When comparing this with the solar radius ρs
which is equal to 6.96 105 km, we find that |rsun| must always remain within 2.3 ρs. The
magnitude of rsun can in fact also approach zero. This variable barycentric offset is at the
origin of all what we will study in this note.

Let us now neglect the N-body interactions among the planets. Then the gravitational
interactions of the planets with the sun are based on the fact that the sun is located
at the origin as a common central force. This configuration corresponds by convention
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to a heliocentric reference system. The simple vectorial link between barycentric and
heliocentric co-ordinates is depicted in Fig. 1 hereafter,

r
r

B

S

sun
i,h

i iPr

                 the sun S and planet Pi.
Figure 1. The vectors connecting the barycenter B,

where the subscript h refers to the sun centered origin. Figure 1 translates into the simple
vector sum:

rsun + ri,h = ri (3)

Thus, the vector sum on the left is equivalent to the ’inertial’ vector ri and this also remains
true if rsun is expressed in terms of heliocentric vectors, because (1) can be rewritten as

0 = Msun (0 + rsun) +

8
∑

i=1

Mi (ri,h + rsun) (4)

This further simplifies to

Mtot rsun = −

8
∑

i=1

Mi ri,h (5)

with the total SSY mass defined by

Mtot = Msun +

8
∑

i=1

Mi = 332716.7EM (6)

To express rsun in terms of heliocentric planetary positions we will employ the dimension-
less normalized masses:

msun =
Msun

Mtot
, mi =

Mi

Mtot
(7)

It is further well known that the center of mass of a mass system coincides with the center
of inertia of that system. The moment arm of the AMm of the sun as point mass thus
corresponds to rsun and its barycentric or inertial AMm is by definition equal to the
following vector product:

Ds = Msun (rsun × ṙsun) (8)

We agree that the upper case D will by convention always refer to point masses. Thus, in
the present context,

Di = Mi (ri × ṙi) (9)

represents the inertial AMm of planet i.
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2.2 Splitting of the Global Inertial AMm

In this subsection we undertake the ’splitting’ of the global inertial AMm. In fact this is
the partitioning of the inertial AMm into a constant and a variable part. The constant
part is identified by finding all vector products ri,h × ṙi,h for all planets, or 1 ≤ i ≤ 8 in
the heliocentric expression of the global inertial AMm including the sun. These particular
vector products each multiplied by their constant planetary mass Mi correspond to the
constant AMa of the different planetary orbits in agreement with Kepler’s second law.
This law applies to a very good approximation to all main planets of the SSY. The sum
of all constant contributions yields then the reference direction with respect to which the
variation of the global AMm is to be measured.

Let us start by deriving the inertial vector Ds in terms of the heliocentric planet position.
Therefore we substitute (5) for rsun and ṙsun in (8). This yields:

Ds = Msun

(

−

8
∑

i=1

mi ri,h

)

×

(

−

8
∑

j=1

mj ṙj,h

)

= Msun

8
∑

i=1

8
∑

j=i+1

mi mj (ri,h × ṙj,h + rj,h × ṙi,h)+

Msun

8
∑

i=1

m2
i ri,h × ṙi,h (10)

The very last term in (10) is obviously constant. It actually corresponds to the constant
solar mass center AMm with the amplitude:

|Dsc| = Msun |

8
∑

i=1

m2
i (ri,h × ṙi,h)| = 0.1349 10−1 force · length (11)

Before proceeding, we introduce the abbreviation

pjk = mj mk (rj,h × ṙk,h + rk,h × ṙj,h) (12)

for what we will call the mixed momentum of the bodies j and k, with pjk = pkj and pkk =
m2

k rk,h × ṙk,h. The vector product rsun × ṙsun will reappear in the AMa of the planets

and therefore we introduce the abbreviations pc =
∑8

i=1 pii and pv =
∑8

i=1

∑8

j=i+1 pij.

For the planets the straight forward substitution of (3) and (5) into (9) leads to:

Di = Mi (ri,h × ṙi,h + pv + pc)+

Mi [ ri,h ×

(

−

8
∑

j=1

mj ṙj,h

)

+

(

−

8
∑

j=1

mj rj,h

)

× ṙi,h ]

= Mi (ri,h × ṙi,h) −Mtot

8
∑

j=1

pi,j + Mi (pv + pc) (13)
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We are now in the position to explicitly write down the formulae for the global AMm Dss

of the SSY, namely

Dss =

8
∑

i=1

Mi (ri,h × ṙi,h) + Mtot (pv + pc −

8
∑

j=1

8
∑

i=1

pij) (14)

But
8

∑

i=1

8
∑

j=1

pij = 2

8
∑

i=1

8
∑

j=i+1

pij +

8
∑

i=1

pii (15)

and consequently (14) simplifies to

Dss =

8
∑

i=1

Mi (ri,h × ṙi,h) − Mtot pv (16)

From this we see that the mean AMm of the SSY is constant while the variable part

Dtot,v = −Mtot

8
∑

i=1

8
∑

j=i+1

pij (17)

oscillates around this mean, due to the nature of the pseudo periodic variation as a function
of time of the different pij vectors defined by (12). The proposal worked out in section 4
for the SSY body AMm contributions cancels the variable angular momentum Dtot,v.

3 NUMERICAL ASPECTS

3.1 Accuracy of Ephemerides Used

Whatever size the variable magnitude ratioDtot,v/Dtot,c may be, Dtot,v remains a pertur-
bation, if not canceled in one way or another. At SSY level such a cancellation mechanism
is hardly conceivable, leaving us with the potential alternative discussed in next section.

The question we face nevertheless, is:”are the ephemerides we use accurate enough for
whatever alternative?”. These orbital data are, in fact, gained from the analytical epheme
rides of Van Flandern T.C. and Pulkkinen K.F.(1979) which claim to provide heliocentric
position vectors accurate to approximately 0.020. Nothing is said about distance mag-
nitudes and continuity. When, in the second half of 2010, the author started the study
about the variable AMm of the sun, he had these ephemerides already programmed and
considered them to be sufficient. Looking at the plots of note 9C, this viewpoint appears
to be satisfactory. Especially, the continuity aspect allowed the conspicuously flawless
computation of two successive partial time derivatives. To this aim we implemented a
five point based numerical differentiation (see Stiefel (1963)) with a time step of 10 days
for Jupiter, 20 days for Saturn, 40 days for Uranus and 80 days for Neptune. This thus
corresponds, for example, to an orbital arc covering forty days for Jupiter and 320 days
for Neptune to compute derivatives for a single epoch.
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When, in 2013, we looked at the minute AMm perturbations hidden in the CW of the
Earth, it was immediately obvious that the inaccuracies of the analytical ephemerides
exceed by far the effects we wished to analyze. In a full time job one certainly would
acquire in some months the adequate NASA planetary and terrestrial ephemerides with the
right characteristics, insert them in the system, etc. Only first then the actual integration
study with the Euler differential equations can start. As a consequence, the author does
not see enough usable time left in front of himself anymore. It’s over.

Limited to the Jovian planets, we have nevertheless casted a glance at the numerical qual-
ity of the analytical heliocentric ephemerides at hand. To that aim we have computed the
mean vector product ri,h × ṙi,h magnitudes – which should be constant – and their orien-
tations based on three samples a year starting from 1800 up to the year 2000. Hereafter,
we provide an edited printout of our corresponding analysis program. In this listing we

NUMERICAL QUALITY OF HELIOCENTRIC MOMENTA

JUPITER Mn(h5)=0.392275835D-01,RMSQ(h5)=0.392275840D-01,σ=0.2515D-06
JUPITER h5/||h5||: 0.225418797D-01, 0.374058679D-02, 0.999738870D+00
JUPITER Mnα = 9.4217760, λ = 1.3093300, Mn ε = 0.01260, RMSQ ε = 0.01440

JUPITER Mn(ḣ5)=0.132915340D-07,RMSQ(ḣ5)=0.157199145D-07,σ=0.2428D-08

SATURN Mn(h6)=0.531578361D-01,RMSQ(h6)=0.531578797D-01,σ=0.2773D-05
SATURN h6/||h6||: 0.400370092D-01, 0.168367844D-01, 0.999056264D+00
SATURN Mnα = 22.808230, λ = 2.4893200, Mn ε = 0.01870, RMSQ ε = 0.02160

SATURN Mn(ḣ6)=0.495741832D-07,RMSQ(ḣ6)=0.614125564D-07,σ=0.1184D-07

URANUS Mn(h7)=0.755772934D-01,RMSQ(h7)=0.755773825D-01,σ=0.4726D-05
URANUS h7/||h7||: 0.129244447D-01, -0.382917760D-02, 0.999909139D+00
URANUS Mnα = −16.503190, λ = 0.772360,Mn ε = 0.00500, RMSQ ε = 0.00560

URANUS Mn(ḣ7)=0.125248381D-06,RMSQ(ḣ7)=0.139393900D-06,σ=0.1415D-07

NEPTUNE Mn(h8)=0.950265232D-01,RMSQ(h8)=0.950266720D-01,σ=0.6850D-05
NEPTUNE h8/||h8||: 0.234901242D-01, 0.201790029D-01, 0.999520328D+00
NEPTUNE Mnα = 40.663960, λ = 1.774580,Mn ε = 0.01850, RMSQ ε = 0.02110

NEPTUNE Mn(ḣ8)=0.200459017D-06,RMSQ(ḣ8)= 0.222806114D-06,σ=0.2235D-07

employed the shorthands Mn = mean value, hi = heliocentric angular momentum of planet
i and hi for its magnitude, σ = variance. α and λ are the mean right ascension and
colatitude of the angular momenta computed with the method given in appendix B. The
mean deviations with respect to this mean directions is denoted by ε. These deviations
are obtained in turn by taking the arc cosine of the projection of the individual directions
onto the mean. From all this we may conclude that the vector product directions are really
accurate up to approximately 0.020 notwithstanding the intervention of the differentiations.

The fourth line for each separate planet contains the magnitudes of the differentiated
AMa which should theoretically be zero. These magnitudes are in all cases smaller than
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the variances of the AMm in the first line. This is satisfactory for the aims we pursue.
Nevertheless, the variances of the AMa indicate that, except for Jupiter, the AMa have
hardly more than 4 reliable significant digits to offer. However, this is more than sufficient
for all detailed plotting of theoretical curves.

3.2 Inertia Ellipsoid of the Solar System

As announced in the introduction, although lacking any valid theory, there is an interest
for analyzing the time evolution of the inertia tensor of the complete SSY, thus comprising
the planets and the sun. At any rate, the inertia tensor N of the SSY is not constant. We
are especially interested to see how the little motion of the largest principal moment of
inertia varies with respect to the direction of the global constant planetary AMm of the
SSY.

To derive the components nij of the 3×3 symmetric matrix N we employ its conventional
definition in the case of discretely distributed point masses Mi with their inertial barycen-
tric positions ri(xi, yi, zi) where 1 ≤ i ≤ 8 stands for the planets and i = 9 corresponds to
the sun. We then have:

nxx =
9

∑

i=1

Mi(y
2
i + z2i ), nyy =

9
∑

i=1

Mi(x
2
i + z2i ), nzz =

9
∑

i=1

Mi(x
2
i + y2i ),

(18)

nxy =

9
∑

i=1

Mi(xi yi) = nyx, nxz =

9
∑

i=1

Mi(xi zi) = nzx, nyz =

9
∑

i=1

Mi(yi zi) = nzy.

The three eigen-values of this symmetric matrix correspond to the magnitude of the three
major axes of principal inertia along the corresponding mutually perpendicular eigen-
vectors in ecliptic co-ordinates. This allows us to compute the instantaneous volume and
the motion of largest principal moment of the inertia ellipsoid with respect to the direction
of the sum of the planetary heliocentric AMa.

Added at the end of this note and based on three samples a year, figure 2 shows the
evolution of the volume of the ellipsoid in the last two centuries. The volume curve
indicates that it corresponds to a non-stochastic discrete spectrum which seems to be a
sum of the first harmonics of the orbital periods of the Jovian planets. This would not be
unexpected, because the diagonalized inertia tensor is filled with squared co-odinates of the
different planetary positions. These coordinates correspond to squares of sines and cosines
involving the simple or fundamental orbital periods. Especially, the actual periodicities
could uncover some unexpected influences of mutual planetary configurations which are
not obvious enough in an other context, even if the present considerations do not provide
any explanation for a possible causality.

The dotted curve added at the bottom of figure 2 shows the colatitude evolution of the
largest principal moment of inertia with respect to the constant part of the SSY AMm.
The deeper minima of the volume values are accompanied by large colatitudes. Both
curves are visibly related, but the colatitude evolution is not smooth. We compare this
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further with the right ascension of the largest principal axis with respect to the global fixed
AMm displayed in figure 3 covering 4 centuries. Also the right ascension is not performing
regular clean rotation(s) around the constant SSY AMm, although it also shows repeating
configuration intervals over time. Consequently, as can be inferred from this little analysis,
there is nothing that suggests a (pseudo) precession. It seems rather to be the contrary,
the planetary orbits have the lead and not the AMa.

3.3 Analysis of Dtot,v

The variable part of the SSY AMm, namely Dtot,v – applicable if the conjecture proposed

in the next section is to be rejected – is equal to (−Mtot

∑8

i=1

∑8

j=i+1 pij). But the

variable AMm of the sun is equal to (+Msun

∑8

i=1

∑8

j=i+1 pij) in (10). The latter is
presented in (5) in note9C and shown in its plots (1) and (2) with a different sign and a
mass coefficient Msun instead of Mtot. The plots (1) and (2) of note9C are thus sufficient
to get a feeling for the variation of AMa and TRQs.

4. POINT MASS AND BODY ANGULAR MOMENTUM COUPLING

In this section we assume that on top of the constancy of the velocity of the center of mass,
also the AMm of the SSY in inertial space has to remain constant, based on a generalization
of an axiom formulated by Euler(1775 or 1967) and which is applicable to a freely moving
rigid body not subject to TRQs or external forces. Therefore, we explain how Euler’s
principle of constant AMm has to be interpreted for systems of 2 < N extended bodies
whose separate inertial motions are known. These motions must be a consequence of forces
inside the system, while no forces or TRQs external to the system may be involved. We
further assume that these bodies are coherent or, in other words, do not join or leave the
system and keep their separate masses constant, but, on the other hand, they do not need
to be rigid.

B

S

A

u

Ri

r

i

i

P

FIGURE 4. The body Pi, itself rotating around 
 its instantaneous center of mass S and further

moving around the barycenter B

We start with looking which types of AMa exist for the separate system bodies. To this
end we consider Fig. 4 with the arbitrary i-th extended rigid or non-rigid and spherical or
non-spherical body Pi of the system. Its instantaneous mass center is located at S. This
mass center S is specific for the AMm of the body Pi rotating in isolation. Further, the
body as a whole is assumed to move (around or) with respect to the inertial barycenter B.
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To be able to represent the total ’system’ AMm of Pi , we agree to say that dm is a mass
element at the point A located at u from S inside Pi with

∫

Pi

dm = Mi. The vectors
u and their time derivatives are measured in a reference system with origin S and with
co-ordinate axes which are parallel to those used to describe the motion around B. The
motion of S around B and its time derivative is described by ri and ṙi, respectively.

Then the total instantaneous inertial AMm Hi of the body with index i is known to be
equal to:

Hi =

∫

Pi

Ri × Ṙi dm =

∫

Pi

(ri + u) × (ṙi + u̇) dm

= Mi (ri × ṙi) +

∫

Pi

u× u̇ dm +

∫

Pi

(ri × u̇ + u× ṙi) dm (18)

Hence, the value of Hi can be broken down in three parts, namely:

Di = Mi (ri × ṙi), Bi =

∫

Pi

u× u̇ dm, Ai =

∫

Pi

(ri × u̇+ u× ṙi) dm (19)

The barycentric AMm Di is the equivalent ’mass point trajectory’ contribution, the vector
Bi is the ’i-th body’ attitude AMm and Ai is a potential ’body asymmetry’ contribution.
The latter will cancel if for the mass element at any arbitrary point u0 inside Pi , there
is an equal mass element at −u0, in other words: if the center of mass of Pi is a point of
mass distribution symmetry. This thus also applies, for example, to ellipsoidal shapes and
layered mass distribution densities.

If there is central asymmetry, Ai would be absorbed in a potentially time dependent inertia
tensor applicable to Pi , which we have exercised in previous section. The problem then
is the inability to define a meaningful spin vector. However, if Pi happens to be rigid,
its inertia tensor Ni is constant and the conventional representation of the body AMm
applies, namely:

Ni Ωi = Bi + Ai (20)

with the spin velocity vector Ωi. Thus, also in that case asymmetry can be ignored.

Let us now consider the total AMm Hsys of a barycentric system of N bodies with the
angular momenta Di, Bi and Ai, then we can write:

Hsys =
N
∑

i=1

Hi =
N
∑

i=1

(Di + Bi + Ai) (21)

In this equation the vectors Di are based on ephemerides or, in other words, the orbital
trajectories one has obtained by integrating the differential equations of orbital motion
taking all meaningful perturbations into account. In this way the coupling of orbital
dynamics with AMa has been accomplished, also for the part going beyond Kepler’s second
law. At any rate, as mentioned before, mutual orbital perturbations of planets are quite
small in a time span of centuries, see Brouwer D. and van Woerkom A.J.J.(1950). The
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actual reason why the AMa Di of the planets are not constant is the fact that these Di

are the angular momenta around the barycenter and not the sun center!

If the N-body system is not subject to external TRQs or forces, the global AMm has to
be constant which implies Ḣsys = 0. Hence,

Ḋi = − (Ḃi + Ȧi) (for i = 1, . . . , N) (22)

for all bodies separately, because Hsys has to be constant for whatever trajectories may
have led to the values of Di. The integration of (22) brings us back to the AMa, but now
with the constant parts stripped off. The proposed axiom extension represented by (22)
can obviously not claim that the global AMm is constant if the system is not conservative,
but it nevertheless states that the time derivative of the global TRQ is zero. Hence, the
global isolated system cannot reorient itself inertially if this only implies internal TRQs.

This can be complemented with an important remark about energy. Assume that a N-
body planetary system consists of rigid bodies only. In that case we expect conservation
of energy. All bodies involved now satisfy (20). For any given body i we assume that Ωi

can be divided up in a constant part Ωi0 and a variable part Ωiv. Then (22) says that
Ḃi = −Ni Ω̇iv. Moreover, we are sure that the mass point TRQ Ḃi 6= 0 except at zero
crossings (occurrences with theoretical measure zero). Non-zero TRQs impart energy to
the bodies involved and if this energy is not compensated by opposite torques the system
is not conservative. A not acceptable situation. The only way out we see, is to accept
(22). This means in this case that mass point energy varies in a way opposite to the body
energy, namely:

Bi = −Ni Ωiv, ΩivḂi = −Ωiv Ni Ω̇iv (23)

It is important to realize that (22) is not an exchange of AMm. Equation (22) is just
stating that a change of barycentric mass point AMm of a body i is not possible without
an equal and opposite change of the attitude AMm of the corresponding body (action and
reaction), provided the asymmetry AMm Ai can be neglected or absorbed in a constant
inertia tensor.

5. PERIODICITIES

We have seen in (17) that the mixed momenta pjk = mj mk (rj,h × ṙk,h + rk,h × ṙj,h),
already introduced in (12), are the only variable contributors to Ds and Di in (10) and
(13), respectively. Consequently, this variability is dependent on the orbital periods Tk

and Tj of the planets k and j, or equivalently the frequencies ωi = 2π/Tk and ωj = 2π/Tj ,
respectively. Finding the fundamental frequencies in the Fourier series representing the
ecliptic z-components of the mixed vector products in pkj implies the consideration of
circular orbits. This corresponds to set xk = ak cos (ωk t + φi) and yk = ak sin (ωk t + φi)
for the projection of the motion of planet k onto the ecliptic, where the phase angle φk

applies at a given arbitrary time t = 0. From a basic frequency point of view one verifies
that

(pkj)z ∼ (xk ẏj − yk ẋj) + (xj ẏk − yj ẋk)

= ak aj (ωk + ωj) cos [(ωk − ωj)t + φk − φj ] (24)
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This yields the fundamental period Tkj = |T−1
k − T−1

j |−1 of that term in the mixed
momentum brought about by the mixed cross products of planet k and j. They are the
synodic periods involving the planet pairs and correspond each to the time separating two
successive conjunctions or oppositions. Because all planets rotate in the same direction
around the sun, a synodic period is always larger than the smallest orbital period of the
planet pair concerned. A closer approximation of the actually elliptical orbits is obtained
by the higher harmonics of the synodic frequencies. The period of the first harmonic is
half the period of the fundamental frequency.

The variable TRQ corresponding to AMm is by definition equal to Ḋi and Ḋs. Hence,

(ṗkj)z ∼ (xk ÿj − yk ẍj) + (xj ÿk − yj ẍk)

= − ak aj (ω
2
k − ω2

j ) sin [(ωk − ωj)t + φk − φj ] (25)

and the TRQs are subject to the same synodic periods already found for the AMa.

Looking back at the different mixed moments occurring in Dk for planet k, we observe
that the larger contributions come from

Dvk ≈ Mk

(

k−1
∑

i=1

+

8
∑

i=k+1

)

pik (26)

From this we derive that – if there is some measurable effect of the AMa and TRQs on
planet k – we may expect that the planets Jupiter and Saturn contribute most. Conse-
quently, the synodic periods containing the orbital period of these two planets may be
involved in these measurable effects. Therefore, we have listed hereafter these periods ex-
pressed in years, excluding Mercury.
T25 = 0.6486, T35 = 1.0921, T45 = 2.2355, T65 = 19.859, T75 = 13.812, T85 = 12.782,
T26 = 0.6289, T36 = 1.0351, T46 = 2.0093, T56 = 19.859, T67 = 45.364, T68 = 35.871.

Especially for a terrestrial (Earth like) planets i, we may consider the interplay of two
different Jovian planets with the orbital period of that single terrestrial planet. In this
context we make the following simple consideration. Let Ti < Tj < Tk, then Tij < Tik. On
that basis we may look for the period Tij/ik of the separation of an ij conjunction from
an ik conjunction. This is given by:

1

Tij/ik
=

1

Tij
−

1

Tik
=

1

Tjk
(27)

This means that the synodic period T56, for instance, has the potential to be detectable
in the disturbance AMa on all terrestrial planets.

When considering the variable AMm of the sun in (10) it is obvious that the largest
contributions come from the Jovian planets and periodicities of the mixed moments can
first be considered pair wise. But we can also take the four Jovian planets in combined
conjunctions in the same way as we did in (27). Thereby we obtain T57/68 = T56/78 =
22.46 yr which corresponds exactly to the period of the mean Hale cycle of solar activity,

12



see P.R. Wilson(1994). This is probably a physically meaningful coincidence, supporting
the assumption that the variable AMa of the Jovian planets play a role in solar activity.

It now happens that the ratios of any two of the synodic periods only involving Jovian plan-
ets are very close to the ratio of two integers. This was already mentioned by Ariaga(1955)
for Jupiter and Saturn, while Jose(1965) extended the list without being complete. These
integer ratios explain why these periods have an approximate Smallest Common Mul-
tiple Period (SCMP) of quite modest size. We propose to approximate this SCMP by
178.75 yr = 9.0009T56, number also mentioned by Jose(1965) in the context of periodici-
ties he analyzed. We then further note that 178.75 corresponds to 13 (12.942) times T57,
to 14 (13.985) times T58, to 4 (3.9403) times T67, to 5 (4.9831) times T68, and to once
(1.0428) T78. Hence, we may really expect some periodicities very close to this SCMP in
all relevant theories involving the synodic periods of the exterior planets.

Important is the fact that the SCMP is also at the origin of a very specific and similar
quasi periodic planetary configuration. This configuration gives rise to a periodically reap-
pearing three-foil shaped projection onto the ecliptic of the solar trajectory around the
barycenter. The reappearance of this well known phenomenon every 178.75 yr has been
studied for its long periodic recurrence by numerous solar physicists, see Charvatova I.
and Str̀es̆t́ik J.(1991) and Charvatova(2000) and references therein. Apparent similarities
of the corresponding AMa linked to the three-foils, slowly drift in their details or simply
dissappear over time under the influence of the imperfection of the common multiple. As
shown before, all synodic periods containing Uranus contribute most to this imperfection.
This drift of similarities might be in line with the observations made in the paper by Abreu
et al.(2012) concerning longer periods up to millenaries with typical periodicities in solar
activity which disappear for a longer time and reappear later again.
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APPENDIX I

The parameters shown hereafter are extracted from the pocket atlas by J. Hermann(2000).
Orbital Parameters of the Major Planets

a(AU) e M(EM) Sidereal Inclina-
Period(yr) tion (deg)

Mercury 0.387 0.206 0.055 0.241 70 0.3′

Venus 0.723 0.007 0.815 0.615 30 23.7′

Earth 1.000 0.017 1.000 1.000 –
Mars 1.524 0.093 1.07 1.881 10 51.0′

Jupiter 5.203 0.048 317.89 11.862 10 18.3′

Saturn 9.539 0.055 95.18 29.458 20 29.3′

Uranus 19.191 0.047 14.54 84.015 00 46.3′

Neptune 30.061 0.010 17.13 164.79 10 46.3′
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APPENDIX II

Determining the Mass Center of Image
of a Coherent Cloud of Points on a Hemisphere

By a small cloud we mean a set of 3 << N points pi which are confined in an arbitrary
small circle whose arc radius is less than - , or equal to π/2 on the unit sphere. The
latter condition means that the complementary Cartesian reference with the co-ordinates
xi, yi, zi for the pi points - or directions - can be rotated in such a way that this small circle
is contained inside a hemisphere bounded by the equator containing the x and y axes, for
instance.

By ’mass center of image’ we mean the point C which is closest in the mean to all points
of the cloud. By choosing polar co-ordinates having their pole on the z-axis, we can write
xc = cosα sinλ, yc = sinα sinλ and zc = cosλ, where α is the right ascension and λ the
colatitude of C. The center of image, or C(α, λ), can be found by minimizing the following
cost function

Q(α, λ) =
N
∑

i

(xi − cosα sinλ)2 +
N
∑

i

(yi − sinα sinλ)2 +
N
∑

i

(zi − cosλ)2 (A)

with respect to α and λ. We further agree to write x̂, ŷ, ẑ for
∑

i xi,
∑

i yi,
∑

i zi, respec-
tively and compute the partial derivative of Q with respect to α. This derivative must be
zero to reach the minimum of Q with respect to α. We get

∂ Q

∂ α
= sinλ (x̂ sinα − ŷ cosα) = 0 (B)

which simply yields
tanα = ŷ/x̂ (C)

To resolve the ambiguity concerning the quadrant applicable to α one just looks at the
actual signs of x̂ and ŷ which define the quadrant or employ the arg(x̂, ŷ) function from
basic complex function theory, or the intrinsic function (D)ATAN2 in FORTRAN, which
also does this job for us.

The value of λ is derived from the condition

∂ Q

∂ λ
= 0

= cosα cosλ (x̂ − N cosα sinλ)

+ sinα cosλ (ŷ − N sinα sinλ) − sinλ (ẑ − N cosλ) (D)

which simplifies to

tanλ =
x̂ cosα+ ŷ sinα

ẑ
(E)
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