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ANGULAR MOMENTA OF THE SOLAR SYSTEM

THE CASE OF THE EARTH AND ITS MOON

Luc Fraiture†

1. INTRODUCTION

In NOTE 9A of this little series, we assumed that the Angular Momentum (AMm) of the
Solar SYstem (SSY) is constant as far as the system is conservative. This assumption is
based on an axiom formulated by Euler(1775 and also 1967) for rigid bodies. This can
be extended by saying that: ’the AMm of a conservative system of constant masses only
subject to system internal forces is constant when, moreover, it is not subject to external
torques’.
The principle of conservation of AMm (if bodies are rigid), leads to the requirement that
the variable part of the AMm of the trajectory of any SSY body (sun or planet) around
the barycenter of the SSY is compensated by an equal body AMm with opposite sign. We
assume here that this conjecture, described in NOTE 9A, is to be accepted. The purpose
of this note is then to evaluate the corresponding N-body small variable AMm and the
real ToRQue (TRQ) which affects the luni-terrestrial system.
The first idea we exploited, is the fact that the AMm brought about by the central forces
of two bodies orbiting each other is constant only when actually measured with respect to
the center of mass or barycenter of these two bodies. The AMm of the orbiting bodies with
respect to the inertial barycenter is not constant if the latter does not coincide with the
barycenter of one of the two orbiting masses. This is what happens with our sun and all its
planets separately. The case of the Earth is slightly more complex than the case of the sun,
because the Earth orbits the sun which is not located at the barycenter of the SSY and the
Earth further rotates around the (non-inertial) barycenter of the luni-terrestrial system.
As we will see in the next section, the luni-terrestrial barycenter is more than 4700. km
away from the Earth’s own center of mass. All these inertially variable Angular Momenta
(AMa) have to be compensated by opposite body AMa inside the luni-terrestrial system.
The second idea concerns the insight that accurate ephemerides of the heliocentric orbits
of the planets and the geocentric orbit of the moon are available for a reasonable past and
future. Positions, velocities and accelerations of the important SSY bodies can thus be
employed as an input to our problem. The advantage of having these trajectory data is
that they already take the influence into account of TRQs due to third bodies influencing
relative inclined orbits and TRQs due to body oblateness.
The third idea consists in getting formulae where the constant heliocentric AMa of the
planets are removed. This means that we have to transform the initially barycentric AMa
into heliocentric and geocentric terms. In this way we get a mixture of both variable and
identifiable constant contributions to the total AMa for the different solar system planets,
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where constant parts can be eliminated. All this improves the numerical conditioning of
the problem and provides direct access to the interpretation of the origin of particular
AMm terms.
The theoretical concept just described should be tested by applying it to Chandler’s Wob-
ble. Unfortunately, the author has to radically descope his further projects due to severe
health problems, as already mentioned in NOTE9A. We will not go beyond the formulation
of the basic theory, making use of the notations introduced in NOTE9A.

2. N-BODY TRQs ACTING ON THE EARTH-MOON SYSTEM

2.1 The Geometry of the Problem

To start with, we assume that all vectors introduced hereafter, are expressed in ecliptic
coordinates whose coordinate axes have to be parallel. Only the origin varies from SSY
barycenter, to sun center and ends with the ’local’ Earth-moon barycenter Bem. Con-
cerning notations, we will identify the sun by the subscript ’s’, for the moon we take the
subscript ’m’, we further employ ’1’ for Mercury, ’2’ for Venus and so on, up to 8 for
Neptune. To denote Earth’s position we will thus use r3 for the vector connecting the
barycenter of the SSY with the center of mass of the luni-terrestrial system. The vector
r3,h is the corresponding heliocentric vector. The mass of the isolated terrestrial body
is represented by Me, while M3 represents the mass of the Earth-moon system. Hence,
we have M3 = Me + Mm. In the present context we also consider ue which is the local
barycentric vector pointing to the geocenter and um the equivalent vector for the moon,
as shown in Fig. 1. The vectors
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re and rm connect the barycenter of the SSY directly with the center of mass of the
terrestrial and lunar bodies, respectively. The latter two vectors are not added to Fig. 1,
but they are vectorially equal to:

re/m = rs + r3,h + ue/m (1)

The SSY barycentric AMm De/m and TRQ Ḋe/m of Earth and moon separately, each
considered as single point masses, is then equal to:

De/m = Me/m (re/m × ṙe/m) and Ḋe/m = Me/m (re/m × r̈e/m) (2)

Let Be/m be the body attitude AMm perturbation of the Earth or the moon separately,
then, according to our conjecture, it is defined by the time integral of :

Ḃe/m = − Ḋe/m (3)
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to get rid of the constant term hidden in De/m. But the constant terms are known and
their elimination is a matter of adequate basic algebra. If the TRQs generate dissipation
in the non-rigid parts of the Earth and the moon, obviously only a fraction of the expected
body perturbation AMa will be realized.

2.1 Elimination of Constant Angular Momenta

Based on (1) we can rewrite (2) as follows

De/m

Me/m
= ( rs + r3,h + ue/m ) × ( ṙs + ṙ3,h + u̇e/m )

= ( rs × ṙs ) + rs × ( ṙ3,h + u̇e/m ) + ( r3,h + ue/m ) × ṙs +

( r3,h + ue/m ) × ( ṙ3,h + u̇e/m ) (4)

stressing the important role of rs. In section 2 of NOTE9A, we have derived that

rs = −

8
∑

i=1

mi ri,h (5)

where mi is the shorthand for Mi/Mtot with the total SSY mass Mtot defined by

Mtot = Ms +
8

∑

i=1

Mi (6)

By substituting (5) into (4), the first vector product on the right hand side of (4) is now
developed with the purpose to introduce a further shorthand. We get

( rs × ṙs ) =

(

−
8

∑

i=1

mi ri,h

)

×

(

−
8

∑

j=1

mj ṙj,h

)

=
7

∑

i=1

8
∑

j=i+1

mi mj (ri,h × ṙj,h + rj,h × ṙi,h)+

8
∑

i=1

m2
i ri,h × ṙi,h (7)

This important abbreviation is namely:

pjk = mj mk (rj,h × ṙk,h + rk,h × ṙj,h) (8)

which we call the MiXed Momenta (MXM) of the bodies j and k, with pjk = pkj. The
constant terms pkk = m2

k rk,h × ṙk,h will be systematically ignored in all what follows.
To all this we also add the complementary abbreviation:

pi,e/m = mi me/m (ri,h × u̇e/m + ue/m × ṙi,h) (9)
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with me/m = Me/m/Mtot. Further, the AMa Me/m(ue/m × u̇e/m) cannot be considered
to be constant.
Let us return to (4) and the expansion of its variable vector-terms. We obtain:

De/m = Me/m

7
∑

i=1

8
∑

j=i+1

pij (10a)

− Mtot (
8

∑

i 6=3

pi3 +
8

∑

i=1

pi,e/m) (10b)

+ Me/m (r3,h × u̇e/m + ue/m × ṙ3,h + ue/m × u̇e/m) (10c)

We notice that the coefficients on line (10a) have the formMe/m Mk Mj/M
2
tot, while similar

coefficients on line (10b) are equal to Me/m Mj/Mtot. Dividing the former by the latter
yields Mk/Mtot. Employing the mass values given in the appendix, with Mtot = 332717.6
Earth masses and selecting Jupiter and Saturn for Mj and Mk , the ratio just mentioned is
equal to 317.9/332717.2 = 0.9555 10−3. It means that the coefficients of the separate terms
of line (10a) are at least thousand times smaller than those of line (10b). Nevertheless, the
mixed momenta correspond to vectors whose magnitude oscillates around zero and thereby
small terms still contribute to accuracy when being close to either zero AMa or TRQs.

2.3 Geocentric Moon Ephemerides and ue/m Dependencies

By assuming that the moon is at 384400. km from the Earth center, we get an offset of
the Earth’s center of mass from the local barycenter equal to 4787 km. This is more than
70% of the equatorial Earth radius. In a similar scenario, the equivalent offset of the local
barycenter of Saturn is at most 200. km and in the case of Jupiter we get only half that
value, thus negligible when considering the sizes of these latter giant planets. The local
barycentric offset of the Earth center is the largest in the solar system when excluding the
sun. This is a more than sufficient reason to include the moon in our analysis.
In this subsection we start by replacing ue/m by vectors proportional to the lunar geocentric
position in ecliptic co-ordinates, which we represent by rm,g. Therefore, we first observe
that the center of mass, Bem in Fig.1, implies

Me ue + Mm um = 0 (11)

and together with um − ue = rm,g this leads to:

um =
Me

Me + Mm
rm,g, ue = −

Mm

Me + Mm
rm,g (12)

where the difference between the signs of um and ue puts an end at the e/m parallel
formulae maintained up to (10). This necessary splitting affects all terms of (10) where
vectors with the subscript (e/m) appear and whose sum will be represented by Ke and
Km, except for Me/m(ue/m × u̇e/m) which we will write He and Hm.
For Ke and Km we obtain:

Ke = +
Mm

Me + Mm

(

Mtot

8
∑

i=1

pi,g − Me (r3,h × ṙm,g + rm,g × ṙ3,h)

)

(13)
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and

Km = −
Me

Me + Mm

(

Mtot

8
∑

i=1

pi,g + Mm (r3,h × ṙm,g + rm,g × ṙ3,h)

)

(14)

For Hm and He we further find

Hm = Mm(um × u̇m) =
Mm M2

e

(Me +Mm)2
rm,g × ṙm,g

He = Me (ue × u̇e) =
Me M

2
m

(Me +Mm)2
rm,g × ṙm,g

|He|/|Hm| = Mm/Me, He +Hm =
MeMm

(Me +Mm)
rm,g × ṙm,g (15)

If we have included ue/m × u̇e/m as a variable term in the two previous equations, it is
because the moon orbit is also subjected to a non-negligible influence of solar gravitation.
This can be deduced from the well known facts that the line of nodes of the moon orbit
in the ecliptic regresses by some 200 per year. Moreover, its apsidal line makes a full
revolution in 8.85 yr. These are sufficient reasons to assume that the lunar orbit around
the Earth does not satisfy Kepler’s second law to a sufficient approximation. But in this
respect we realize that He and Hm are well known precise numerical entities which are
not directly linked to the solar barycentric offset. The corresponding AMm mass point
deviation from its constant mean is in principle accurately known. Only the sign of the
attitude body impact depends on the acceptance or refusal of the mass point-body AMm
conjecture. We have not checked the availability of relevant potential literature and did
not pursue this track.

3. ANGULAR MOMENTUM ANALYSIS

3.1 Periodicities

In section 5 of NOTE 9A it has been shown that the ecliptic z-component of the MXM
have an approximate periodic behavior proportional to sin(|ωk−ωℓ| t) where t is time in yr,
ωj = 2π/Tj is the rotation rate component of planet j for which Tj is the orbital period.
Consequently, the combined period Tkℓ is defined by

ωkℓ =
2π

Tkℓ
= |

2π

Tk
−

2π

Tℓ
| (15)

and known as the synodic period separating either successive conjunctions or oppositions
of the planets k and ℓ.
In this section we first look for the fundamental frequencies linked to the MXM p3k which
appear in the left term of (10b) and thus apply to Earth and moon alike. They all have a
mean periodicity exceeding a terrestrial year, as shown in table 1. Other, thousand times
smaller contributions are coming from (14a). They can be limited to the MXM consisting
of the combination of two Jovian planets. All of these periods exceed the Jupiter sidereal
orbital period T5 = 11.862yr with the lowest value T58 = 12.782yr up to T78 = 171.41yr.
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Table 1. Earth-Planet Synodic Periods In Years and Corresponding
Earth Spin Axis Rotation Component Periods in days (in brackets)

VENUS MARS JUPITER
1.597(636.22) 2.135(850.37) 1.092(434.95)
SATURN URANUS NEPTUNE

1.035(412.28) 1.012(403.08) 1.006(400.72)

Now, reminding the latitude dependency of the rotation period of the oscillation plane
of Foucault’s pendulum, the time dependency of p3k of the z-component of the AMm of
planet k in ecliptic co-ordinates is heuristically like the Earth spin rate at the pole for
the pendulum. The terrestrial spin axis is at 24.350 away from the ecliptic z-axis. The z-
component of any p3k carries almost the full magnitude of the MXM. This AMm direction
can, in a good approximation, be interpreted as coincident with a rotation rate with a
period T3k. Consequently, only the projection of this rotation vector onto the Earth ’spin
axis’ is translated into an Earth spin effect. This effect is thus reduced to the projection
cos(24.350)ω3k and the corresponding apparent synodic periods felt on Earth are equal to
S3k = T3k/ cos(24.35

0). The latter values expressed in days are shown between brackets in
table 1. There we notice that the apparent synodic periods of the Jovian planets Jupiter
and Saturn fit into the interval of approximate, observed Chandler Wobble periods.

Let us now Consider the variable MXM terms in (10) where the moon and Earth are
involved as ue and/or um. By (12) these u-vectors are subject to the orbital period of
the lunar geocentric position vector. Consequently, synodic periods between the moon or
Earth and planet k represented on the right of (10b), are comprised in a narrow interval
defined by Tm = 27.322 days < Tmk ≤ Tm3 = 29.531 days, as one can easily verify. The
same applies ’a fortiori’ to the MXM contained in (10c). Thus moon and Earth are both
separately affected by disturbance AMa and corresponding TRQs whose period are all very
close to the moon’s sidereal orbital period.

3.2 Magnitudes

Excluding Mercury, we consider 7 planets. Consequently, we have 21 different MXM
pik vectors. To get a feel for the orders of magnitude involved, we have tabulated the
different magnitudes cik of the mixed vector products cik = cki = ri,h × ṙk,h + rk,h ×
ṙi,h. We considered the sums of cik over 81 years, sampling one set of values once a
month. The units employed are AU for length and day for time. It happens that the sums
obtained are all quite similar. This is best exemplified by giving the sums obtained for
Venus successively combined with the other planets and the same for the Earth. We got:

Σc23 = 20.62, Σc24 = 25.47, Σc25 = 55.57, Σc26 = 100.3, Σc27 = 199.4, Σc28 = 314.5.
For the Earth we obtained:

Σc32 = 20.62, Σc34 = 24.95, Σc35 = 60.11, Σc36 = 104.9, Σc37 = 207.2, Σc38 = 322.7.

Also all other mixed vector products satisfy the inequality Σc23 ≤ Σcij ≤ Σc38 for 2 ≤ i 6=
j ≤ 8.

The largest extremum of each mixed vector product met in 81 years were identified and
again similar results were obtained. The location of the boundaries are the same as before,
for we found sup(c23) = 0.0328 ≤ sup(cij) ≤ sup(c38) = 0.7400.
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Hence, the amplitudes of the MXM are ruled by the different mass combinations inside
the coefficients of (10). Therefore, our attention goes to terms Mtotpi3 in (10b) which
we consider to be responsible for the bulk of the long(er) periodic minute perturbations
of the Earth attitude. Coefficients involved are M(3, i) = M3 Mi/Mtot for which we
obtain: M(3, 2) = .248E-5, M(3, 4) = .326E-6, M(3, 5) = .968E-3, M(3, 6) = .290E-3,
M(3, 7) = .443E-4, and M(3, 8) = .524E-4. This corresponds to an interval M(3, 4) =
.326E-6≤ M(3, k) ≤ M(3, 5) = .968E-3. The comparison with the coefficients M(3, j, k)
applicable to (10a) reveals that the highest boundary of M(3, j, k) corresponds more or
less to the lowest boundary of the M(3, k) coefficients, or M(3, 5, 6) ≈ M(3, 4). Hence,
Mtot

∑

i 6=3
pi3 is by and large at least responsible for the first three significant digits of the

AMm and TRQ perturbations with periods longer than one year. This may be sufficient for
plotting purposes, but higher precision requires the inclusion of the AMm vectors involved
in (10a) as well.

4. CONCLUDING REMARKS

At this point I have reached the task of predicting the Earth body response to the per-
turbing TRQs presented before. Theoretically one should integrate the Euler differential
equations for the rotation vector (=spin vector) of the terrestrial body subject to the sum
of TRQs acting on it. The question arises how one deals with the TRQ exerted by the
moon on the oblate Earth combined or not in the integration of the perturbing planetary
TRQs. One can even imagine some simpler approximations with uncertain accuracy.
I know that there are enough clever and experienced scientists able to tackle this problem,
and this also without my thoughts which would be void of any practical verification. But
exactly this verification is actually the point. At any rate, it is better to present a note
which is missing this last step, than to take the risk to present no note at all in the end.

Appendix

Orbital Parameters of the Moon and Major Planets

a(AU) e M(EM) Sidereal Inclina-
Period(yr) tion (deg)

Moon* 384400.* 0.055 0.0123 27.322* 50 9′

Venus 0.723 0.007 0.815 0.615 30 23.7′

Earth 1.000 0.017 1.000 1.000 –
Mars 1.524 0.093 0.107 1.881 10 51.0′

Jupiter 5.203 0.048 317.9 11.862 10 18.3′

Saturn 9.539 0.055 95.18 29.458 20 29.3′

Uranus 19.191 0.047 14.54 84.015 00 46.3′

Neptune 30.061 0.010 17.13 164.79 10 46.3′

* for the moon the unit of length is km and the unit of time is given in days
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